

RESEARCH MANUAL
Detect and Identify Disease in Plants

(Student) - Darran Gahan
C00098391@itcarlow.ie

Lecturer
Nigel Whyte

Date of Submission

09/11/2018

1

Abstract

It is estimated that 39 percent of worldwide crops are lost to disease and insects. The ability

to accurately detect and identify disease on plants is key to helping reduce this figure

(Sfiligoj, 2018). The scientists in EnviroCORE are researching innovative environmental

technologies and biotechnologies with a view towards enhancing the economic and social

development in an environmentally friendly manner (envirocore, 2018). Researchers within

EnviroCORE based at Institute of Technology Carlow (ITC) currently carry out visual

inspections on plant leaves and make subjective opinions on the health of the plant. This

project will produce an application that will remove this subjectivity from the process. This

application will achieve this through the use of computer vision and machine learning.

2

Contents
Abstract... 1

1. Currently Available Apps ... 3

1.1 PictureThis .. 3

1.2 Pl@ntNet .. 4

1.3 PlantSnap .. 5

1.4 Plantix ... 6

1.5 LeafDoctor .. 7

2. Technologies ... 9

2.1 Computer Vision ... 9

2.1.1 Open CV .. 9

2.1.2 Downsides .. 10

2.2 Edge Detection .. 10

2.2.1 Sobel .. 10

2.2.2 Canny ... 11

2.2.3 Prewitt Operator ... 11

2.3 Object Recognition ... 12

2.4 Object Detection ... 12

2.4.1 Hog Features .. 13

2.2.4 Region-based Convolution Neural Networks ... 13

2.2.5 YOLO (You Only Look Once) .. 13

2.2.6 SSD (Single Shot Detector).. 13

3. Article Review .. 14

4. System Overview ... 15

References .. 16

3

1. Currently Available Apps
While conducting research for this project I looked for apps that are currently on the market. I

found a wide range of apps that can detect the species of plant from an image and a few that

detect disease in plants from an image. The apps I reviewed that detect species of plants and

or disease are “PictureThis”, “Pl@ntNet”, “PlantSnap”, “Plantix” and “LeafDoctor”.

These apps all had there good and bad points.

1.1 PictureThis

“PictureThis” was launched in 2017 it is an English version of a Chinese application named

“XingSe” which was launched in 2015. “PictureThis” has a very clear and easy to use UI. It

allows users to either take a picture with the camera on the device or to use a picture already

on the device. The landing page shows the user a simple and clear screen with three main

buttons “Take Photo”, “Photo Album” and “Plant Care”. The first time you select “Take

Photo” the application provides a screen with examples of good and bad photos. When taking

a picture, the application display’s an outline on the screen to help the user centre the picture.

The application then attempt’s to analysis the image straight away, if it cannot find a match it

will provide a list of possible matches and allow the user to pick the correct one. If there are

no correct matches the user can select “No Match” which will give the user, the option to

either ask for help from the community or to suggest a name. While testing this app it was

unable to identify a leaf off a rose bush.

Figure 1.1 – Landing Screen Figure 1.2 – Examples of good and bad
pictures

4

1.2 Pl@ntNet
Pl@ntNet is a research and a citizen science project, it was initially supported by Agropolis

Foundation, and developed since 2009. This project continues today through the Floris’Tic

initiative funded by a Future investment program. The landing screen provides the user with

images recently submitted by the community. There is a button at the bottom of the screen to

take a picture. The user is given the option to take a picture or use a picture from their

gallery. It provides a tutorial that shows the user examples of good and bad photos. It

attempts to provide analysis of the species straight away, if it cannot find a match it will

provide the user with a list of possible matches. However, while I was testing the app it could

not identify a rose bush leaf and the list of possible matches it provides was very large, about

40 to 50 species.

Figure 1.3 – Overlay on screen to assist
the user

Figure 1.5 – landing screen Figure 1.6 - examples of good
and bad pictures

Figure 1.4 - Analysis results

5

1.3 PlantSnap
The landing page for the application is the active camera screen where the user can take a

picture if select one from their gallery. There is a button bar across the bottom, selecting the

“More” button brings the user to the “More” screen here a user can view the help section

which provides a number for tutorials on taking an appropriate picture, such as examples of

good and bad images as well as videos on YouTube to help the user. The app attempts to

analyse the image straight away and if it cannot find a match it will offer the user the option

to send the image to be identified by a person. When testing this app, it could not identify a

leaf from a rose bush.

Figure 1.7 - Examples of good
and bad pictures

Figure 1.8 - option for camera or
gallery

Figure 1.10 - Help screen
showing tutorials

Figure 1.9 - Landing screen, places user
straight into camera.

6

1.4 Plantix
Plantix is a mobile application developed by PEAT who were founded in Hanover, Germany

2015. PEAT define and maintain the global standard in image recognition for plant

protection. Plantix aims to provide the user with the ability to detect and identify any disease

that may be present in a plant. Plantix allows the user to take a picture of a leaf or analysis an

image from the user’s gallery. The landing screen provides the user with the last photo taken

and weather information for the user’s current location. There is a clearly labelled button in

the bottom right hand corner that will take the user to the camera screen, so they can take a

photo. The first time you go to the camera screen the application provides the user with an

example of do’s and don’ts when taking a picture. Once the picture is taken the application

analysis the image and provides the user with any information on possible disease that may

have been found in the given image.

Figure 1.11 - Example of good
picture

Figure 1.12 - example of bad
picture

7

1.5 LeafDoctor
LeafDoctor is a mobile app to assess the level of disease in plants. The application allows

users to take a photo or use an image from the user’s gallery of a leaf and measure the

percentage of diseased area. LeafDoctor has an easy to use UI. When opened the user is given

the option to analysis a leaf, view their history, look for help and information about the app.

When the user selects analyse, they are given the option to take a photo or load an image

Figure 1.13 - landing screen Figure 1.14 - examples of good and bad
pictures

Figure 1.15 - result of analysis of leaf Figure 1.16 - Weather data provided

8

from their gallery. When the photo is taking, or image selected from the gallery, the user is

provided with a slider to select the threshold for the image analysis. The application then

moves to the results screen where the information about the percentage of disease detected on

the leaf if presented.

Overall during my research, I found a few common good points and a few common bad

points with currently available apps. Good points such as instant analysis, easy to use UI,

tutorials on taking a good and bad photo and examples of good and bad photos, as well as

providing a list of possible matches if a match is not found but limiting this list to a number

Figure 1.18 - Take photo or
load image from gallery

Figure 1.17 - landing screen

Figure 1.19 – Threshold slider
for analysis

Figure 1.20 - result of analysis

9

that is not overwhelming. Using GPS location to get weather information for the image and to

save the location of the image, and in turn the plant, making it easier for the user to track

individual cases where disease is found.

2. Technologies
Most of this project will be written in the Java programming language. The reason for this is

its ability to implement the OpenCV library and the fact it runs on Android, as there will be a

mobile application. When looking at possible programming languages to use for the mobile

application I considered using python, but upon researching python and OpenCV I found that

implementing the two in the Android environment was a much harder task than using Java as

the programming language. The Desktop application will be written Python using the Django

framework. As one of the main features of the application will be to take and process images

it is very important that the computer vision library used is of a high standard and proven to

work as intended. OpenCV has been implemented by many companies around the world

including Google, Yahoo, Microsoft, Intel, IBM, Sony, Honda, Toyota etc, and will be used

in this project.

2.1 Computer Vision
The goal of computer vision is to make useful decision about real world objects and scenes

based on sensed images (Shapiro & Stockman, 2001). Computer vision is closely tied to

artificial intelligence because the computer must be able to process what it sees and then

decide the outcome. Computer Vision has three main processing components that run one

after the other. They are image acquisition, image processing, and image analysis and

understanding. Image acquisition is the process of turning the world we live in into a binary

data representation in the form of digital images. Image processing is the low-level

processing of these images. Algorithms are applied to the obtained images. This can involve

algorithms for things like Edge Detection, Segmentation, Classification, and Feature

Detection and Matching. Image Analysis and Understanding is where the computer makes a

decision about the image. High-level algorithms are applied using the image data and the

low-level information obtained in the image processing such as, Object recognition and

Object tracking (Kaiser, 2017).

2.1.1 Open CV
OpenCV (Open Source Computer Vision Library) is an open source computer vision and

machine learning library. OpenCV was developed to provide a common infrastructure for

computer applications and to help speed up the use of machine perception. The library

10

contains more than 2500 optimized algorithms which can be used to detect and recognize

faces, identify objects, classify human actions in videos, track camera movements, track

moving objects, extract 3d model of objects and many more. OpenCV is written in C++ but

supports Java, Python and METLAB interfaces, it supports Windows, Linux, Mac OS,

Android and iOS (opencv.org, 2018). OpenCV was initially developed by intel and later

supported by Willow Grange, who are a robotics research lab based in Menlo Park California,

and then later by Itseez, who were then acquired by intel in 2016 (opencv.org/intel-acquires-

itseez.html, 2016).

2.1.2 Downsides
Computer vision can have its challenges when it comes to completing its task. Noisy or

incomplete data can be a big problem as the focus of the image may not by accurately

represented and can lead to false results. Real-time processing and limited resources i.e.

power, memory (Kaiser, 2017) .

2.2 Edge Detection
Edge detection is a technique for processing images to find the boundaries of objects within

the images. Edge detection works by detecting discontinuities in the brightness of an image.

Edge detection can be used for data extraction and image segmentation in image processing,

computer vision and machine learning. Some common edge detection algorithms are Canny,

Sobel, Prewitt, and Roberts (uk.mathworks.com/discovery/edge-detection.html, n.d.).

2.2.1 Sobel
The Sobel operator is a discrete differential operator. It used two 3x3 kernels. One to

calculate the gradient of the x-direction and one to calculate the gradient of the y-direction.

The original image is convolved with both kernels to get the approximate derivatives in the

horizontal and vertical change. For each given point the magnitude of the gradient can be

approximated by using either of the formulas: G = G√𝐺𝑋
2 + 𝐺𝑌

2𝐺
 , or 𝐺 = |𝐺𝑥| + |𝐺𝑦|. The

latter being a faster method of computing the gradient magnitude. The Sobel operator uses

Fig 2.1 - kernel for x-direction in sobel Fig 2.2 - Kernel for y- direction in sobel

11

the smoothing effect Gaussian smoothing, because of this it is less sensitive to noise in the

images. The smoothing affects the accuracy of the edge detection this means that the Sobel

method does not produce images with high accuracy for edge detection, but it is more than

adequate to be used in numerous applications (Kim, 2013).

2.2.2 Canny
The canny edge detector was developed by John F. Canny in 1986. The Canny operator

consists of multiple steps. The first is a Gaussian filter that is used to smooth the image and in

turn remove noise from the image. Second, the gradient magnitude is computed, this is done

by use of a pair of 3x3 convolution masks. One is used to calculate the x direction and one to

calculate the y direction.

Thirdly the non-maximum suppression is applied. The algorithm removes pixels that are not

part of an edge. The last step involves using hysteresis thresholding along the edges.

Hysteresis Thresholding involves the use of two thresholds an upper threshold and a lower

threshold. If a pixel is above the upper threshold the pixel is marked as an edge. If the pixel is

below the lower threshold then the pixel will be discarded. If the pixel is between the upper

threshold and the lower threshold only pixels that are connected to pixels above the upper

threshold will be marker as edges (Kim, 2013).

2.2.3 Prewitt Operator
The Prewitt operator is credited to Dr. Judith Prewitt. The operator calculates the gradient of

the image intensity at each point, given the direction of the largest possible change in the

direction of the largest possible increase from light to dark and the rate of change in that

direction. The result shows how abruptly or smoothly the image changes at that point and in

turn how likely it is that part of the image represent an edge and how that edge is orientated.

The magnitude of a calculation is more reliable and easier to interpret that the direction. The

Operator uses two 3x3 kernels which are convolved with the original image to calculate the

approximation of the derivatives.

Figure 2.3 - Convolution mask for x
direction in canny

Figure 2.4 - Convolution mask for y-
direction in canny

12

2.3 Object Recognition
Object recognition is a computer vision technique for identifying objects in images or videos.

Object recognition is a key output of deep learning and machine learning algorithms. The

goal is to teach a computer to do what comes naturally to humans, gain understanding of

what an image contains. Objects can then be outlined with a boundary box. Object detection

is similar to object recognition, but you only have two class of object classification which

means object bounding boxes and non-object bounding boxes. Object recognition is a key

technology behind driverless cars, it enables them to recognize a stop sign, or distinguish a

pedestrian from street sign. It is also used applications such as disease identification in

bioimaging, industrial inspection, and robotic vision.

2.4 Object Detection
Object detection focuses on identifying a particular type of object in a picture instead of all

objects, like with object recognition, algorithms typically use extracted features and learning

algorithms to detect instances of an object by a category. Image classification takes an image

and predicts if an object is present in the image. If you build a cat-dog classifier, you would

take an image and predict if there is a cat or dog present in the image, but if both where

present in the image it would cause a problem. A multi-label classifier can be built to solve

this problem, it will predict both classes in the image. This classifier will not be able to tell

you the location of the objects. Identifying the location of an object in an image is called

localization. Determining the class of an object and its location is known as object detection.

In object detection the class of the object as well as a rectangle, known as a bounding box, to

contain the image must be predicted.

Object Detection is modelled as a classification problem where windows of a fixed size from

an input image are fed into an image classifier. The classifier predicts if there is or is not an

object in the window. One problem we face is the object can be of varying sizes. To solve

this an image pyramid is created by scaling the image. The way this works is by resizing the

Figure 2.5 - kernel for x-direction in
prewitt

Figure 2.6 - kernel for y-direction in
prewitt

13

image at multiple scales and counting on the fact that at one of the scales the object will be

completely contained within the chosen window size and thus help solve the problem of size

and location. There are various algorithms for object detection such as Hog features and R-

CNN. Some algorithms for object detection treat it as a regression problem, these include

YOLO and SSD (Sachan, 2017).

2.4.1 Hog Features
Navneet Dalal and Bill Triggs developed Histogram of Oriented Gradients (HOG) feature in

2005. Hog features are computationally inexpensive and is good for solving many real-world

problems. For Each window obtained the Hog features is calculated which is then fed to an

SVM (Support vector machine), which is a supervised learning model used for classification,

to create classifiers. Hog features can be run in real time on videos.

2.2.4 Region-based Convolution Neural Networks
Deep learning provides us with the option to replace the Hog classifiers with a far more

accurate convolutional neural network based classifier. CNNs can be slow and

computationally very expensive to solve this an algorithm call Selective search is used, this

reduces the number of windows that are fed to the classifier. It does this by using things

texture, colour, intensity.

2.2.5 YOLO (You Only Look Once)
In YOLO object detection is treated as a simple regression problem that takes an input image

and learns the class probabilities and bounding box coordinates. It does this by dividing the

image into a grid of S x S and each grid then predict N bounding boxes and a confidence. The

confidence represents the accuracy of the bounding box and whether it contains an object.

The threshold for the confidence can be set which will remove and boundary boxes below the

threshold. Another difference with YOLO is that it sees the complete image instead of

generated windows, this contextual information can help in avoiding false positives. A

limitation of YOLO is that is only predicts one type of class per grid meaning, it has trouble

with detecting very small objects.

2.2.6 SSD (Single Shot Detector)
The Single Shot Detector strikes a good balance between accuracy and speed. It runs a CNN

on and input image once and calculates a feature map, a 3x3 convolutional kernel is run on

the image to predict boundary boxes and classification. Anchor boxes are used at different

aspect ratios and it SSD learns the off-set rather than the learning the box. Bounding boxes

14

are predicted after multiple convolutional layers this allow the algorithm to detect objects at

various scale since each convolutional layer operates at a different scale.

3. Article Review
Title: Signs and Symptoms of plant disease: IS it fungal, viral or bacterial?

Author: Jim Isleib Date: 19/12/2012

The article “Signs and Symptoms of plant disease: Is it fungal, viral or bacterial?” written by

Jim Isleib discusses the signs and symptoms of plant disease and the three main pathogenic

microbes: fungus, bacteria and virus.

Almost 85% of most plant disease is caused by fungal or fungal like organism. nematodes

also known as roundworm can also cause disease in plants. Some diseases are classified as

abiotic, meaning they are non-infectious and include damage from air pollution, nutritional

deficiencies or toxicities, and grow under less than optional conditions. When an unknown

plant problem appears, abiotic diseases, herbicide injury and nematode problem must be

considered as possibilities.

A sign of plant disease is where there is physical evidence of the pathogen. In the case of as

powdery mildew on a lilac leaf, that powdery mildew is actually a parasitic fungal disease

organism. A symptom of plant disease is a visible effect of disease on the plant. These can

include a change of colour or shape. Wilting is also a symptom of disease specifically

Verticilum wilt. With a symptom you are not actually seeing the disease pathogen, but rather

a symptom that is caused by the pathogen.

Fungal disease signs may include Leaf rust, Stem rust, Sclerotinia and Powdery mildew.

Fungal disease symptoms can be Bird-eye spot on berries, Damping off of seedlings, Leaf

spot, Chlorosis. Bacterial disease sign can be difficult to observe but can include Bacterial

streaming in water from a cut stem. Bacterial disease symptoms can include Leaf spot with

yellow halo, Fruit spot, Canker, Crown gall and Shepard’s crook stem ends on woody plants.

There are no viral disease signs as the viruses themselves cannot be seen. Viral disease

symptoms may include Mosaic leaf pattern, Crinkled leaves, Yellowed leaves and plant

stunting.

This article covers the main types of pathogens in plants and some of the signs and symptoms

that may come along with them. It has given me a good insight into classification and

identification of plant disease as well as the difference between a sign and a symptom of plant

15

disease. This information will help greatly when developing the computer vision aspect of the

application and also help improve the accuracy of the application.

4. System Overview

Mobile Application

Database
Desktop Application

Fig 3.1 – Brief overview of possible system

16

References

envirocore. (2018). envirocore.ie. Retrieved from envirocore.ie: http://www.envirocore.ie/

Kaiser, A. (2017, December 12). What is Computer Vision? Retrieved from hayo:

https://hayo.io/computer-vision/

Kim, D. (2013). Sobel Operator and Canny Edge Detector.

opencv.org. (2018). opencv.org/about.html. Retrieved from opencv.org:

https://opencv.org/about.html

opencv.org/intel-acquires-itseez.html. (2016, May 27). Retrieved from opencv.org:

https://opencv.org/intel-acquires-itseez.html

Sachan, A. (2017). cv-tricks.com/object-detection. Retrieved from cv-tricks: https://cv-

tricks.com/object-detection/faster-r-cnn-yolo-ssd/

Sfiligoj, E. (2018, April 9). The Disease/Insect Outlook for 2018: New Challenges at Every

Turn. Retrieved from croplife: www.croplife.com

Shapiro, L. G., & Stockman, G. C. (2001). Computer Vision. New Jersey: Prentice Hall.

uk.mathworks.com/discovery/edge-detection.html. (n.d.). Retrieved from mathworks.com:

https://uk.mathworks.com/discovery/edge-detection.html

