

Design Manual

For

 iPhone Application

Submission Date: -

15th of January 2010

Prepared by: -

Tuna Erdurmaz (C00115609)

Supervisor: -

Paul Barry

Page 2 of 17

Table of Contents

1. Introduction…………………………………………………………………………………..3

2. Architectural Design………………………………………………………………………...4

3. Interfaces Design

3.1. Help Icon () Tapped Screen Shots – “Details” Segmented Control………….6

3.2. Help Icon () Tapped Screen Shots – “Home” Segmented Control…………..7

3.3. Help Icon () Tapped Screen Shots – “Expenses” Segmented Control……...8

3.4. GUI Prototype Screen Shots……………………………………………………….9

4. Modular Design of Sub-Systems

4.1. Overview…………………………………………………….…..…….……………12

4.2. Brief Responsibilities of Each Module…………………………………………...12

4.3. Data Structure Design of Major Modules………………………………………..14

4.4. Procedural Design of Major Modules……………………………………………15

5. Test Provisions……………………………………..…………………….........................17

6. Conclusion………………………………….……………………………………………....17

Page 3 of 17

1. Introduction

The purpose of this document is to make an iPhone app project easier to code, test,

debug and maintain. This design manual will give you an idea about what my design

decisions are (what my intensions are), how the iPhone app will be used by presenting

the model of the application which supplements this manual and explanations

associated with them. This manual was created after several meetings and discussions

with the Red Oak Financial Ltd that the project (iPhone app) based on their tax refund

calculator and the technical details as the workings of the calculations cannot be

published due to the Non-Disclosure Agreement with the company in this document.

The design of the modules in this manual are made in such a way as to separate the

code of the GUI and the main code of the project that does the work so that other GUI’s

can be created in other environments at a later date with minimal changes needed to be

made to the main program code. The GUI lay out in this manual is the user interfaces

prototypes that assist in explanation of the project functionality.

Page 4 of 17

2. Architectural Design

At the highest level, the software architecture above summarizes how the iPhone app

will be organised in terms of sub-systems. The system is grouped into different layers

(sub-systems) and each sub-system communicates with each other in a top-down

fashion. The organisation of each sub-system is also further detailed via a modular

design.

Page 5 of 17

The Tax Refund Calculator iPhone app GUI layer is based on six modules. First four

GUIs called Details GUI, Home GUI, Expenses GUI and Spouse GUI which are

designated to get the relevant information (e.g. Annual Salary, Tax on Salary, Medical

Expenses) from the user to calculate the tax refund estimation. One of the last two GUIs

is called RefundResult GUI presents the tax refund estimation after the set of necessary

calculations. Last GUI is called Apply GUI that allows the user to communicate with the

company via email.

The Domain layer consists of nine modules. The classes DetailsViewController,

HomeViewController, ExpensesViewController, RefundResultViewController and

ApplyViewController that deal with the functionalities of the program interacted by the

user in the relevant GUIs. The module called CalculateTaxRefund in this domain is very

important since the set of calculations in order to get the refund estimation are made by

this class. There is also module called ResetCalculator that cleans all the calculator

fields which entered by the user and turns back to the calculator to its initial view

(DetailsView). These modules are further detailed later section in this document.

Lastly, The services layer contains the class called Constants that imagine this class

like a database holds all the constant values of the calculator that the calculator will be

using these constants while performing the refund calculations.

3. Interfaces Design

Tax Refund Calculator has an explanatory help to clear any ambiguity of the user which

associated with the each field of the calculator. The application will pop-up the blue

message box which contains the relevant information, if the user taps the red question

mark icon () beside the relevant field.

Page 6 of 17

3.1. Help Icon () Tapped Screen Shots - “Details” Segmented Control

Page 7 of 17

3.2. Help Icon () Tapped Screen Shots - “Home” Segmented Control

Page 8 of 17

3.3. Help Icon () Tapped Screen Shots - “Expenses” Segmented Control

Page 9 of 17

3.4. GUI Prototype Screen Shots

“Details” View Screen Shot

This screen shot is the start-up and the first

step of the Tax Refund Calculator iPhone app

called “Details” that allows the user enters

his/her personal income tax information. The

user can proceed next step “Home” either by

touching the “Next Step” button above at the

navigation bar or the user is able to immediate

access to any step (“Details”, “Home”, or

“Expenses”) he/she wants by using the

segmented control. “Reset” button is also

provided on the navigation bar, if the user

wishes to reload the calculator and clear all the

fields contained by the “Details”, “Home”,

“Expenses” and “Your Tax Refund” views.

“Home” View Screen Shot

This screen shot is the second step of the Tax

Refund Calculator iPhone app called “Home”

that allows the user enters the information

about his/her principle residence. The user can

proceed next step “Expenses” either by

touching the “Next Step” button above at the

navigation bar or by using the segmented

control. Reset button also exists on the

navigation bar to reload the calculator.

Page 10 of 17

“Expenses” View Screen Shot

This screen shot is the third and the last step of

the Tax Refund Calculator iPhone app called

“Expenses” that allows the user enters the

information about allowable expenses before

presenting the result of the estimated tax refund.

The user gets his/her tax refund estimation

whenever he/she touches the “Next Step”, the

calculator will switch and display the view “Your

Tax Refund”. Reset button also exists on the

navigation bar to reload the calculator.

“Your Tax Refund” View Screen Shot

This screen shot displays the estimated tax

refunds of the user. The user is allowed to come

back to the calculator (“Details” view) by

touching the “Back” button on the navigation bar

above, if the user doesn’t satisfy with the result

and wants to make changes. The calculator

dynamically calculates and fills the user refund

estimation as long as the user fills the

information without requiring further button for

the calculation.

Page 11 of 17

“Contact us” View Screen Shot

This screen shot allows the user to contact with

the Red Oak Tax Refunds Company. The user

enters the required fields and touches the

“Submit” button in order to establish

communication channel with the company.

“Contact us” is last but not least view since this

iPhone app’s aim is to attract the users with the

result of the calculation and makes them to

apply Red Oak Tax Refunds Company to get

back their tax refunds.

Page 12 of 17

4. Modular Design of Sub-Systems

4.1. Overview

The diagram below is the visual representation of the iPhone app modular design.

4.2. Brief Responsibilities of Each Module

DetailsViewController

This module is a sub-class of the UIViewController which is a generic controller base

class that manages a view. DetailsViewController hides all the information necessary for

the functionalities of the Details view’s elements such as when the user taps the date of

Page 13 of 17

birth picker button, DetailsViewController will respond this by sliding the date picker

upwards on the screen or if the user has dependent children and he/she is Single, the

module will respond this by making the “Are you cohabiting?” question visible.

HomeViewController

This module is a sub-class of the UIViewController which hides all the information

necessary for the functionalities of the Home view’s elements such as if the user taps

the “Done” button on the keyboard, HomeViewController will resign the keyboard.

ExpensesViewController

This module is a sub-class of the UIViewController which hides all the information

necessary for the functionalities of the Expenses view’s elements such as if the user

taps the Rent or Mortgage picker button and selects the Rent, ExpensesViewController

will respond this by making the “Rent From” field visible.

The classes called SpouseViewController and RefundResultViewController will perform

with the same fashion as in explained above modules.

ApplyViewController

This module is a sub-class of the UIViewController which hides all the information

necessary for the functionalities of the Apply view’s elements such as if the user taps

the “Submit” button on the navigation bar, ApplyViewController will respond this by

sliding the email composer picker to the screen. This module is also responsible to send

an email (which contains the customer details) to the company.

SwitchViewController

This module is also a sub-class of the UIViewController which will be the very crucial

class since this will be the head of the entire classes that manages the switches

between the views and controlling the modules called CalculateTaxRefund and

ResetCalculator. In other words, the overall mechanism of the calculator will be based

on SwitchViewController.

Page 14 of 17

CalculateTaxRefund

This module will get the user information from the SwitchViewController class and

performs the necessary calculations in order to get the tax refund estimation of a user.

Reset Calculator

This module will access the user information from the SwitchViewController class and

bring an application to initial state by clearing all the relevant fields in the calculator.

Constants

This module will hold all the relevant constant values for the calculator such as

maximum Tax Rate of the year 2009 is 20% while minimum is 41%.

4.3. Data Structure Design of Major Modules

CalculateTaxRefund

This module data structure will be of an NSArray object which will be filled from the

calculator fields through its indexes when the user taps a “Next Step” button on

the navigation bar before getting his/her tax refund estimation. The module will

access the each value of an array indexes to perform set of calculations.

ResetCalculator

This module data structure will also be of an NSArray object which will be filled

from the calculator fields through its indexes when the user taps a “Reset” button

on the navigation bar and the calculator will be turned back to its initial condition

by the module which will set the relevant array indexes to the initial values.

ApplyViewController

This module will be using NSString object in order to get the user details when the user

intends to send his/her details to the company. ApplyViewController class will perform

operations to send an email with this NSString object as the body of an email.

Page 15 of 17

4.4. Procedural Design of Major Modules

SwitchViewController

Starts when the user taps one of the segments (“Details” ,”Home” ,”Expenses” or

”Spouse”) of the Calculator Segmented Control in order to switch into another view.

1. SwitchViewController checks the selected segment index.

2. The appropriate functions are called to resign the picker view, date picker and

keyboard, if they are active.

3. Removes the current view from being a superview without loosing any data that

the user has already entered on to this view. (e.g. text field, picker view, slider)

4. Finally, inserts a selected segment’s view as a subview in order to switch into it.

Starts when the user taps the “Next Step” button on the navigation bar just before

getting his/her tax refund estimation.

1. The appropriate functions are called to resign the picker view, date picker or

keyboard, if they are active.

2. Removes the current view (“Expenses” or “Spouse”) from being a superview

without loosing any data that the user has already entered on to this view.

3. Inserts “RefundResult” view as a subview by using RefundResultViewController

class in order to switch into it.

4. Finally, calls the CalculateTaxRefund class which calculates the user refund

estimation.

Page 16 of 17

Starts when the user taps the “Reset” button on the navigation bar.

1. The appropriate functions are called to resign the picker view, date picker or

keyboard, if they are active.

2. Removes the current view from being a superview and turns back to initial view

“Details”.

3. Finally, calls the ResetCalculator class in order to reload the calculator.

Starts when the user taps the “Apply Today!” button on the “Refund Result” view.

1. Switch the tab bar controller into “Contact” tab bar item and displays the contact

form.

Starts when the user taps the “Back” button on the navigation bar of the “RefundResult”

view.

1. Removes the “RefundResult” view from being a superview and turns back to the

view that the user was previously on.

CalculateTaxRefund

Starts when the user taps the “Next Step” button just before getting his/her tax refund

estimation.

1. Gets the user details from the calculator.

2. Performs a set of calculations to determine the refund estimation of a user.

3. Passes the result to the appropriate view (“RefundResult” view).

Page 17 of 17

ResetCalculator

Starts when the user taps the “Reset” button on the navigation bar.

1. Pop-up the message box for confirmation.

2. If the user confirms the operation, reload all the elements of each view to their

initial values.

2. If the user cancels the operation, do nothing.

5. Test Provisions

The classes created during the project are being made with efficiency and ease of

testing foremost in my mind. Testing the project as a whole should not be to difficult due

to the fact that I should be able to test most of the modules individually. Testing will take

place in the iPod Touch regularly straight after the completion of the major bunch of

tasks.

6. Conclusion

It is an inevitable fact that design process is a very crucial step which should be done

very carefully and properly before starting the coding of the project. After creating that

file as you have seen above, now coding will be straight-forward and it will save time

during programming of an iPhone application because of all the major design decisions

will already have been taken. However, as soon as I begin writing code changes may

be needed to the design document, it maybe some changes about architectural design,

modular design or interfaces design. It is important to watch out also while coding, a

high level of cohesion and a low level of coupling between modules is important to

maintain. After that approach, it will be easy to test, debug and maintain.

