
Occam to C++ Translator

Shaoguang Miao C00131017 Page 1

`

 Occam & C++ Translator

 Student Name: Shaoguang Miao

 Student ID: C00131017

 Supervisor: Joseph Kehoe

Occam to C++ Translator

Shaoguang Miao C00131017 Page 2

Table of Contents

I. Introduction ... 3

II. Low Level Design ... 4

1. Main Data structure Design .. 4

2. Lexer Design .. 6

3. Parser Design ... 11

III. High Level Design ..24

1. Use Case Design .. 24

2. Contract .. 26

3. Modular Design... 28

4. System Sequence diagram ... 31

5. Project Flow Chart .. 33

6. Class Diagram.. 34

7. Interface Design ... 35

IV. Testing Design ..37

V. Conclusion ...40

Reference..41

Occam to C++ Translator

Shaoguang Miao C00131017 Page 3

I. Introduction
This document will show the whole design par of the project. It includes low level

design, hight level design and testing design. Because the Occam is a context free

language, I can use Lexer and Parser way to do this project. However, the code written

by people can be a lot of different situations, translate the whole project is impossible.

First version of the project will translate some basic key words first. If there is enough

time, I will continue to develop the next version.

In low level design, it introduces the main data structure, Lexer design and Parser

design. Of course, the parser if most important part, because it will do the actually task

of translating. In the parser part design, the algorithm for each import keywords was

listed, like SEQ, PAR, and WHILE etc. In the first part of the low level design part, the

main data structure has been given out. The stack is one of the most important data

types, because the scope of each variable or keyword is significant thing in

programming. Even there are a little bit problems about the scopes; the program will

show the totally different result to the user. Thus first thing of the project is mark sure

the scope of each word. In this process, the stack is the most useful data structure.

Another important data type is linked list. Lexer will separate the whole Occam source

code into a linked list, and then pass it to Parser. The entire thing for parser part is how

to handle this linked list. How to define the type of the token is a problem for this

project, because there is a lot way to do that. It is hard to say which one is the best. For

this project, I select static const global variables to represent the type of the data. How to

separate the Occam source code into tokens is the main task of the Lexer. In the Lexer

part, I listed the algorithm about how to separate the code in to word, recognise the

word and put them into the linked list.

In high level design, the main use case, use case diagram, operation contract, module

diagram, system sequence diagram, class diagram and flow char was listed. It showed

the whole structure and procedures of the project.

In testing design, there are numbers of test sample was listed for testing. In final project,

those sample will be a part of basic test.

Occam to C++ Translator

Shaoguang Miao C00131017 Page 4

II. Low Level Design

1. Main Data structure Design

There are data structure I will use in this project, I will give the detail following .

struct token{

 int type;//Used to recored the type of the word.

 char *name;//Used to record the value of the word.

 token *next;//Point to next node.

 token *pre;//Point to prvious node.

};

This structure will be used in the whole project. Because the Occam is a text-free

language, I can use Lexer and Parser to handle translating. Every word from the Occam

source code will be recognised as a token. This token should have data type, name, the

pointer pointed to next token, and the pointer pointed to previse token. For every line of

the Occam code, the Lexer will build a double linked list then pass it to Parser. Parser

will translate it into new expressions.

struct stack{

/*Using position to identify the position of indentation and number to indentify the number of

variables in this scope. */

 int position;

 stack* next;

};

This structure will be used to record the position of beginning of each scope. Because

the Occam uses indentation to mark the scope for each key word, I have to translate it

into the curly bracket. Stack is the key of handling this problem. The Lexer and Parser

part will give detail about how to use this structure.

 static const int UNKNOWN=0;

 static const int ASSIGN=1;

 static const int QUESTION=2;

 static const int EXCLAMATION=3;

 static const int SKIP=4;

 static const int STOP=5;

Occam to C++ Translator

Shaoguang Miao C00131017 Page 5

 static const int SEQ=6;

 static const int IF=7;

 static const int WHILE=8;

 static const int PAR=9;

 static const int ALT=10;

 static const int LR_BRACKET=11;

 static const int RR_BRACKET=12;

 static const int LC_BRACKET=13;

 static const int RC_BRACKET=14;

 static const int FOR = 15;

 static const int FROM = 16;

 static const int NUMBER = 17;

 static const int OPERATOR = 18;

 static const int CHAN = 19;

 static const int BOOL = 20;

 static const int BYTE = 21;

 static const int INT = 22;

 static const int INT16 = 23;

 static const int INT32 = 24;

 static const int REAL32 = 25;

 static const int REAL64 = 26;

 static const int QUOTATION = 27;

 static const int INDENTATION = 28;

 static const int LA_BRACKET = 29;

 static const int RA_BRACKET = 30;

 static const int EQUAL = 31;

 static const int END_NODE = 32;

 static const int DECLARATION = 33;

static const int PUTINT = 34;

As mentioned before, there should have data type for each token. The list above is all

the data type should be translated in this project. Using this way to define the data type

is easier to understand and use.

Occam to C++ Translator

Shaoguang Miao C00131017 Page 6

2. Lexer Design

Lexer is actually a kind of word recognisor; it will get the token from the each line of the

code. Making all tokens which in one line together in one linked list is the main task of

the Lexer.

First of all, the Lexer has to know every character, number and operator, and then make

the characters become new tokens. For this process the algorithm should like:

token *Lexer::sep_String(token *header,string word){

while (index < word.length()){

if(key_char == '/0'){ // Handle nothing in line but a enter

 continue;

 }

 else if (key_char == ':'){ // Handle “:=” or just “: ”

 index++;

 key_char = word[index];

 if(key_char == '='){

 sub_str = ":=";

 index++;

 }

 else

 sub_str = ":";

 }

 else if(check_v_obj.check_Char(key_char)){//If the key_char is a characters, do this

 index = next_variable_P(word,index_current); // Get next unchar's position.

 sub_str = word.substr(index_current,index - index_current);//Get the new substr.

 if (sub_str == "IF"){

 if_position = index - 2;

 if_Stack = push(if_Stack,if_position);//Add it into the if_stack;

 }

 }

 else if (check_v_obj.check_Number(key_char)){//If the key_char is a number, do this.

 index = next_unnumber_Position(word,index_current);

 number_b = true;

 sub_str = word.substr(index_current,index - index_current);

 }

 else if (check_v_obj.check_Operator(key_char)){ // Handle normal char

Occam to C++ Translator

Shaoguang Miao C00131017 Page 7

 sub_str = key_char;//word.substr(index_current,index - index_current);

 index++;

 }

 else if (check_v_obj.check_Brackets(key_char)){//Handle left bracket

 sub_str = key_char;

 index++;

 }

 else if(check_v_obj.check_Quotation(key_char)){ //Handle string or char

 index = next_quotation_P(word,index_current);

 sub_str = word.substr(index_current,index - index_current);

 quotation_b = true;

 if(sub_str[0] == '\''){

 sub_str[0] = '\"';

 sub_str[sub_str.length()] = '\"';

 }

 }

 else if (key_char == ' ' || key_char == '\t'){//Check the space problem.

 index = next_unspace_P(word,index_current);

 continue;

 }

 else if(key_char =='\n')//Handle the only a enter in one line

 continue;

 header = token_Linked(header,sub_str);// Add to linked list

}

return header;

}

After the Lexer get one substring, it will pass it to the other function to handle it. In the

new function, the string passed will be recognised. The new function will get the

data_type and value, put them into the linked list.

token* Lexer::token_Linked(token *header,string words){

 Token token_obj;

 int w_type = 0;

 string w_name = words;//Store each sub_word of the words.

 bool assignment_b = false; //Mark if this is assignment or not.

 if(words == ":="){

Occam to C++ Translator

Shaoguang Miao C00131017 Page 8

 w_type = token_obj.ASSIGN;

 assignment_b = true;

 add_first_b = true;

 }

 else if(words == "?"){

 w_type = token_obj.QUESTION;

 add_first_b = true;

 }

 else if(words == "!"){

 w_type = token_obj.EXCLAMATION;

 add_first_b = true;

 }

 else if(words == "SKIP"){

 w_type = token_obj.SKIP;

 }

 else if(words == "STOP"){

 w_type = token_obj.STOP;

 }

 else if(words == "SEQ"){

 w_type = token_obj.SEQ;

 }

 else if(words == "IF"){

 if_b = true;

 w_type = token_obj.IF;

 }

 else if(words == "WHILE"){

 w_type = token_obj.WHILE;

 }

 else if(words == "<"){

 w_type = token_obj.LA_BRACKET;

 }

 else if(words == ">"){

 w_type = token_obj.RA_BRACKET;

 }

 else if(words == "PAR"){

 w_type = token_obj.PAR;

 }

 else if(words == "ALT"){

 w_type = token_obj.ALT;

 }

Occam to C++ Translator

Shaoguang Miao C00131017 Page 9

 else if (words == "{"){

 w_type = token_obj.LC_BRACKET;

 }

 else if (words == "}"){

 w_type = token_obj.RC_BRACKET;

 }

 else if(words == "="){

 w_type = token_obj.EQUAL;

 }

 else if (words == "FOR"){

 w_type = token_obj.FOR;

 }

 else if (words == "("){

 bracket_b = true;

 w_type = token_obj.LR_BRACKET;

 }

 else if (words == ")"){

 bracket_b = false;

 w_type = token_obj.RR_BRACKET;

 }

 else if (words == "CHAN"){

 w_type = token_obj.CHAN;

 }

 else if (words == "BOOL"){

 w_type = token_obj.BOOL;

 variable_b = true;

 data_type = w_type;

 }

 else if (words == "BYTE"){

 w_type = token_obj.BYTE;

 variable_b = true;

 data_type = w_type;

 }

 else if (words == "INT"){

 w_type = token_obj.INT;

 variable_b = true;

 data_type = w_type;

 }

 else if (words == "INT16"){

 w_type = token_obj.INT16;

Occam to C++ Translator

Shaoguang Miao C00131017 Page 10

 variable_b = true;

 data_type = w_type;

 }

 else if (words == "INT32"){

 w_type = token_obj.INT32;

 variable_b = true;

 data_type = w_type;

 }

 else if (words == "REAL32"){

 w_type = token_obj.REAL32;

 variable_b = true;

 data_type = w_type;

 }

 else if (words == "REAL64"){

 w_type = token_obj.REAL64;

 variable_b = true;

 data_type = w_type;

 }

 else if(words == "PUTINT"){

 w_type = token_obj.PUTINT;

 }

 else if(operator_b){

 w_type = token_obj.OPERATOR;

 operator_b = false;

 }

 else if(quotation_b)

 w_type = token_obj.QUESTION;

 else if(indentation_b){

 w_type = token_obj.INDENTATION;

 indentation_b = false;

 }

 else{

 if(data_type!=0)

 w_type = data_type ;

 else

 w_type = check_datatype(words);

 }

 token *newnode = new_Token(w_name,w_type);

Occam to C++ Translator

Shaoguang Miao C00131017 Page 11

 header = add_Token(header,newnode);

return header;

}

After those two modules, the linked list produced by the Lexer will be passed into

Parser part.

3. Parser Design

There are 5 constructer will be translated in the project, they are IF, WHILE, PAR, SEQ

and CHANNEL. However they are the other few basic operator have to be translated

too, like assignment, basic data type, etc. I will the detail of the data structure and

algorithm about them following.

a. Basic Data types

They primitive Occam data type will be shown following (Table 1):

 Table 1 [1]

Occam to C++ Translator

Shaoguang Miao C00131017 Page 12

Table 2 will showthe basic Occam type which will be translated to matched C++

data type. I will pick the some to them supported by C++ to translate, because

they are necessary data type for any program.

OCCAM C++

INT int

INT 16 short int

INT 32 int

INT 64 Not supported

REAL 32 float

REAL 64 double

BYTE string

BOOL bool

 Table 2

Occam to C++ Translator

Shaoguang Miao C00131017 Page 13

b. Operators

They are lots of different in operators between Occam and C++. The following

will give the primitive operators out (Table 3).

 Table 3 [1]

The matched operator in C++ will be given in Table 4. Those operators will be

replaced immediately from Occam to C++. There are the other operators will can

not be done as same as them will be given detail in the rest of this document.

Occam C++

+ +

- -

* *

/ /

AND &&

OR ||

NOT !

Occam to C++ Translator

Shaoguang Miao C00131017 Page 14

= ==

<> !=

< <

> >

<= <=

>= >=

/\ &

\/ |

>> >>

<< <<

 Table 4

c. Assignments

In Occam, assignment is :=, = will be instead of it in C++. However there is a little

difference rules beside they have different shape. About multi-assignment, in

Occam like this:

 a, b, c = d, e, f

However, in C++ it not like:

 a = d, b = e, c = f

Because a list of expressions appearing to the right of the assignment symbol (:=)

is evaluated in parallel, and then each value is assigned (in parallel) to

corresponding variable of the list to the left of the symbol in Occam. But, the

order of C++ is run them from left to right. Thus, the multi-assignment will be

handled using multiple threads which will not be given detail here. How to

change the format of them is also a problem. The Binary Tree will be used in

whole project for handling lots of problems.

Occam to C++ Translator

Shaoguang Miao C00131017 Page 15

I will give just give the shape and theory here; the detail will give out in the other

parts of this document.

For example:

 Input is: a, b, c = 1,c+ 2, 3

They are using threads to be handled.

Process:

 Before handle the assignment part, the Parser will do a pre-process first, because

it will be easy to handle if all the assignments are in a same type of expression. In

pre-pre-process, the mathematic expression (ie c + 2) will be translate into type

newvariable = c +2, and then delete the c+2 from the linked list and add this

newvariable into the linked instead. After that all of the assignment is like a same

type of the expression. I want to build a new library to handle assignments. I will

give a roughly idea about it below (Dig.1). However, I haven’t decided how to

hand this problem.

Expressions Results

 Dig.1

 The binary tree will be traversed using NRL (Node, Right and Left). The detail

will not be given in this document.

Pre-Process Detail function

Occam to C++ Translator

Shaoguang Miao C00131017 Page 16

d. For Loop

Actually, there is no exactly For Loop in Occam. However, there is a replication

in the other keywords. Thus, we also need make special module for the

replication. The gramma of replication like this:

 IF x = 1 FOR 5

 Do something

 PAR x = 1 FOR 5

 Do something

 SEQ x = 1 FOR 5

 Do something

Because it is between the other keywords and process expressions, it is very

different with C++; I just need to separate for loop part and the IF (or PAR or SEQ)

part as two parts. Here we just need to handle for part.

The algorithm of built for tree will show following;

string get_Replicator(token *token_list,string indentation){

if(check_v_obj.check_Replicaotr(token_list)){

//push the indentation number into the stack.

 Replicator = push_Stack(replicator,indentation_number);

 expression += indentation;//Add indentation

 //Get essiontial element from the linked list.

 string for_s = "FOR", equation = "=";

 token* equal= get_Pointer(token_list, equation);//Get the pointer pointed to “=”

 token* for_p= get_Pointer(token_list, for_s); //Get the pointer pointed to “FOR”

Occam to C++ Translator

Shaoguang Miao C00131017 Page 17

 //Get the variable which the controler of the for loop;

 /*the for loop in Occam is like

 SEQ I = 0 FOR 10

 Variable = base FOR mas_size

*/

 string variable = equal->pre->name;

 string max_size = for_p->next->name; //Get the limination;

 string base = equal->next->name;

replicator_variables = add_V(replicator_variables, variable,token_obj.INT);

 expression += "for(int ";

 expression += variable;

 expression += "=";// index used in for loop

 expression += base;//start number

 expression += "; ";

 expression += variable; // index used in for loop

 expression += "<";

 expression += max_size; // max number

 expression += "; ";

 expression += variable;

 expression += "++){\n";

 }

return expression;

}

Occam to C++ Translator

Shaoguang Miao C00131017 Page 18

For handling this problem, we have to make sure what the scope of the FOR key

word is. I will talk about the scope at the end of part 3.

e. IF Condition

I have mentioned it before, like what I said. There are two big differences

between them. There is a pair of round brackets around the condition and square

brackets around the expression and the IF key word and IF condition are in the

separated line. We have to handle them separately.

The algorithm will show below:

string if_Handler(token *token_list,string indentation){

 //Push the if position into if_position_stack

 if_position_stack = push_Stack(if_position_stack,indentation_number);

 //Get the replicaotr followed by if.

 replicator = get_Replicator(token_list,indentation);

 return replicator;

}

string condition_of_IF(token *token_list,string indentation){

 //handle the indentaion of if expression.

 if(if_condition_stack==NULL){ // This is not the first condition of if

//Record the indentation numbers.

 if_condition_last = indentation_number;

 //Push the position of condition into stack.

if_condition_stack = push_Stack(if_condition_stack,if_condition_last);

 }

Occam to C++ Translator

Shaoguang Miao C00131017 Page 19

 else{// This is the first condition of if

 /* there may be one nested if problem*/

 if(if_condition_last < indentation_number){ // handle nested_if

if_condition_stack = push_Stack(if_condition_stack,indentation_number);

 if_condition_last = indentation_number;

 }

 else if(if_condition_last>=indentation_number){ // normal else if handler

 expression += indentation_if; //Make to C++ grammar

 expression += "}\n";//Make to C++ grammar

 expression += indentation_if; //Make to C++ grammar

 expression += "else if(";//Make to C++ grammar

 }

}

 //Hanle the boolean expression part.

 expression += boolean_Expression(token_list);

 expression += "){\n";

 return expression;

}

f. WHILE LOOP

Like IF, Occam use changing line to separate condition and expression, however,

there is a pair of round bracket around condition. Occam uses indentation to

represent the scope of variables and keywords; square bracket has been used to

instead of them in C++. For handling this problem, we have to make sure what

Occam to C++ Translator

Shaoguang Miao C00131017 Page 20

the scope of the WHILE key word is. I will talk about the scope at the end of

part3.

The main Algorithm for WHILE LOOP shown following:

string Parser::while_Handler(token *token_list,string indentation){

 //Record the position of while, put it into stack.

 while_stack = push_Stack(while_stack,indentation_number);

 temp = token_list ->next; // Next node

 expression+= boolean_Expression(temp); //Handle Boolean expressions

 return expression

}

g. PAR

PAR is the key word reserved for Occam complier which is for combining a

number of processes which are performed concurrently. It means every process

which is in this key word scope should be run parallel. This is the most

important features of the Occam. Programmers can use the simplest code to do a

very complex thing using Occam. For example:

index1 , index2 := 0,0

WHILE apple <>10

 PAR

 index1 = index1 +1

 index2 := index2 +1

The program will execute the expression1 and expression2 at same time.

However, in normal programming languages, we have to build a thread for each

expression. The Occam makes the parallel program easier to build. For handling

Occam to C++ Translator

Shaoguang Miao C00131017 Page 21

this problem, we have to make sure what the scope of the PAR key word is. I will

talk about the scope at the end of part 3. Now I will give the algorithm of the

PAR first:

 Binary_tree *PAR_translate(){

//Using for loop algorithm

String expression = Check is there any for loop followed by PAR.

 Par_mark = true; //This is a global variable for mark the scope of the PAR

//Record the position of the PAR.

par_stack = push_Stack(par_stack,indentation_number);

}

h. SEQ

All the expression (process) in this key word scope should be produced one by

one. It means every of the expression should be run under the sequence of the

code. For example;

index1 , index2 := 0,0

WHILE apple <>10

 PAR

 SEQ

 index1 = index1 +1

 SEQ

index2 := index2 +1

Those two expression should be execute one by the other as same as usually

program does. Of course there is the stack should be used to record the position

of the first word of the SEQ to mark sure its scope. The algorithm will be shown

below:

Occam to C++ Translator

Shaoguang Miao C00131017 Page 22

string Parser::sequence_Handler(token *token_list,string indentation){

 string replicator = ""; //Replicator expressions.

 seq_b = true;

 seq_inden = indentation_number;

 replicator = get_Replicator(token_list,indentation); //Handle the replicator.

 if(par_b){ //If the SEQ in the PAR, it will be handled in special way.

 par_seq_b =true; //Mark, the SEQ in the PAR.

 par_b = false; //Chang the property of the expression into SEQ.

 //Push the position into stack.

 seq_stack = push_Stack(seq_stack,indentation_number);

}

 return replicator

}

Actually, if the SEQ is not in the PAR it will do nothing but followed by a for loop.

i. Scope

There is a huge different between Occam and C++ is the scope. The Occam uses

the indentation to hanle a scope of the key word, but C++ use curly bracket to be

instead of it. How ever in C++ there is also using indentation to make the code

easy to understand. Thus in translated C++ scource file, the indentation should

be keeped and curly bracket also should be add at same time. As mentationed

before, whenever we use socpe key word (like IF, WHILE, PAR, SEQ), we should

push the position into matched stack to make sure it scope. For same reason,

when ever parser gets a new expression, it should check if it is out of some of the

scope.

The algorithm shown below:

 string Parser::indentation_Handle(token *token_list){

 token *current = token_list;

 string expression = "";

 string returned_in = current->name; // Get indentation from the linked list.

 if(token_list->type!= token_obj.END_NODE) //Check if it's the last expression.

 // Get the length of indentation.

indentation_number = returned_in.length();

 else

Occam to C++ Translator

Shaoguang Miao C00131017 Page 23

 indentation_number = 0;

 //*********************** Check if Scope *****************************

 if(if_position_stack!= NULL){

 expression = if_Scope(token_list);

 }

 //************Check Replicator Scope**

 if(replicator!=NULL){

 expression = replicator_Scope(token_list);

 }

 //*****************************Check WHILE Scope************************************

 if(while_stack != NULL){

 expression = while_Scope(token_list);

 }

 //**************************Check PAR Scope**************************************

 if(par_stack!=NULL)

 par_Scope(token_list);

 //*************************Check SEQ Scope*********************************

 if(seq_stack!= NULL)

 seq_Scope(token_list,returned_in);

 return returned_in;

}

Occam to C++ Translator

Shaoguang Miao C00131017 Page 24

III. High Level Design

1. Use Case Design

1.1 Use Case: Open File

Actor: User

Description: User clicks the open file button (or open file in menu), the software will

show the dialog. User selects the file which will be opened and click submit

button. The software will read the file and put the content of the file into left text

box of the software. User may cancel the file it select, the software will close the

open file dialog.

1.2 Use Case: Save File

Actor: User

Description: After user modified the content of the Occam source file, user clicks the

save button (or save option in the menu), the software will save it into the file

which is opened by user before. User also could select Save As in the menu, the

software will show a save file dialog. User could fill the name and click the

submit button to save it or click cancel button to cancel it. After the user click the

button, the software will close the save file dialog.

1.3 Use Case: Export File

Actor: User

Description: After user translated the Occam source code into C++ source code, user

click the Export File in the menu and the software will show an Export file dialog.

After user fills the name of the file click submit button to save it or cancel button

to cancel it. The software closes the Export file dialog.

Occam to C++ Translator

Shaoguang Miao C00131017 Page 25

1.4 Use Case: Translate

Actor: User

Description: After user click the translate button (or translate option in the menu), the

software translate this Occam source code into C++ source code. And then show

the result into the right text box area.

1.5 Use Case Diagram

Occam to C++ Translator

Shaoguang Miao C00131017 Page 26

2. Contract

Operation: open_file(string : path)

Cross References: Use Case: Open File

Precondition: User selected the file from the open file dialog

Post condition:

 The content of the file was shown in the left text box area.

 path was associated with the path parameters.

 a open file dialog instance was created.

Operation: Save As

Cross References: Use Case: Save File

Precondition: User fills the path of the new file

Post condition:

 A save file dialog instance was created.

 The content of the left text box area was saved in the special path.

 A new file was created

Operation: Export File

Cross Reference: Use Case: Export File

Precondition: User fills the path of the new file

Post condition:

 A Export file dialog instance was created.

 A new file was created.

 The content of the right text box area was saved in the special path.

Occam to C++ Translator

Shaoguang Miao C00131017 Page 27

Operation: Translate

Cross Reference: Use Case: Translate

 Precondition: There is a file has been open in the left text box.

 User clicked the translate button.

Post condition:

 Three template files were created.

 Lexer class instance was created.

 Parser class instance was created.

 The translated result was shown in the right text box area.

Occam to C++ Translator

Shaoguang Miao C00131017 Page 28

3. Modular Design

a. Modular Design Diagram

b. Graphic User Interface:

User will control the software through out of Graphic User Interface. It is also the

only thing the user can know about the software, thus I try my best to make it

looking better. The main window showed below (Fig.1). Actually, it is followed

by standard rules to make it easy to use for user.

Occam to C++ Translator

Shaoguang Miao C00131017 Page 29

c. Open Occam File:

After the user clicked the open file button, this module will be used. An open file

dialog will be showed on the top of main window; user could select the file

which he wants to open. After the use submits the file, the content of the file

selected will be shown in the left text box area. This must be the first step of the

whole project. Translate and save button can not be used without opening any

file before.

d. Save Occam File:

After the user modified the content of the Occam source file, the user could use

this module to save a file into directory. The user could save the current file or

save it as the other new file which will be created by the software.

e. Export C++ File:

This is exactly like save as option, the different is it will export a C++ file. This

module can not be used unless the user has translated Occam file to C++ file.

Occam to C++ Translator

Shaoguang Miao C00131017 Page 30

f. Translation

This is the core module of this project. There are two parts in this module. First of

all, the Lexer will recognise every string from the Occam source and put it in a

linked list and pass the linked list to Parser which is the other part of this module.

Parser will translated the linked list and write the result into a template file. After

all the translating, the Lexer will make the entire of all template files together as a

new C++ files.

g. File Operations

This file used the I/O stream to read from and write to the files. Actually, I did not

create an individual class for this module, but it is a special module of the project.

Whatever it is GUI, Lexer or Parser; this part will be used in it. All of the

operations to the files are included in this module.

h. File

This module is the memory module. This project used three template file for store

the useful information. All of the template files should belong to this module.

Occam to C++ Translator

Shaoguang Miao C00131017 Page 31

4. System Sequence diagram

Occam to C++ Translator

Shaoguang Miao C00131017 Page 32

Occam to C++ Translator

Shaoguang Miao C00131017 Page 33

5. Project Flow Chart

Occam to C++ Translator

Shaoguang Miao C00131017 Page 34

6. Class Diagram

Occam to C++ Translator

Shaoguang Miao C00131017 Page 35

7. Interface Design

Interface is the other import part for the software. Here I will show the main part of the

interface.

The main interface of this project showed below (Dig.2):

 Dig.2

Translate Open File

Translated Result

Occam Code

File Path

 Save

File Menu

Occam to C++ Translator

Shaoguang Miao C00131017 Page 36

After user click open button, the open file dialog will be shown below (Dig. 3):

 Dig. 3

After user click Help button, the about button will be show:

 Dig. 3

Occam to C++ Translator

Shaoguang Miao C00131017 Page 37

IV. Testing Design
How to test this program is a big problem for this project, because the code written by

people. There are too many situations in their coding. The more tests I will do, the better

my project it is. For each key word there should be one testing program shown below:

For simple assignment:
INT32 apple, apricot:

apple := 2

apricot := 3

apple := apple + 1

For multi-assignment:
INT32 apple, apricot:

apple := 2

apricot := 3

apple,apricot := apricot, apple

For IF statement:
INT pointer, found, finished:

pointer, found, finished := 1,2,3

IF

 pointer = 1

 found := 6

 pointer = 2

found := 8

Occam to C++ Translator

Shaoguang Miao C00131017 Page 38

For Nested IF statement:
INT pointer, found, finished:

pointer, found, finished := 1,2,3

IF

pointer = 1

 IF

 finished = 2

 found := 6

pointer = 2

found := 7

For replicator:
INT pointer, found, finished:

pointer, found, finished := 1,2,3

SEQ i = 0 FOR 10

 pointer := i + pointer

 finished := i * finished

 For WHILE:
INT pointer, found, finished:

pointer, found, finished := 1,2,3

WHILE pointer <> 10

 pointer := pointer+1

 found := found + 1

Occam to C++ Translator

Shaoguang Miao C00131017 Page 39

For WHILE_IF
INT32 apple, apricot:

apple, apricot := 6, 7

WHILE apricot <> 10

IF

 apricot <> 10

 IF

 apple = 6

 apple := apple+7

 apricot := apricot + 1

For Nested Loop:
INT32 apple, apricot:

apple, apricot := 6, 2

WHILE apricot < 3

 SEQ i = 0 FOR 10

 apple := apple +1

 apricot := apricot + 1

For PAR:
INT32 apple, apricot:

apple := 1

apricot := 2

PAR i = 0 FOR 10

 apple := apple + 1

 apricot := apricot + 1

Occam to C++ Translator

Shaoguang Miao C00131017 Page 40

V. Conclusion
The design could be the most important part of the whole project. After it, I will do the

project followed by this document as close as possible to make sure I am doing it in a

right way.

I have defined the data type and keyword which this project will handle in the low level

design. In low level design part, the details of main data structures which will be widely

used are also mentioned. Several import algorithms of Lexer and Parser are given out in

the low level design.

In the hight level design, there are lot of UML diagram, like System Sequence Diagram,

Class Diagram, Module Design Diagram, and Flow Chart Diagram etc. Those diagrams

clearly showed the structure of the project.

Test is always the difficult of every project. It is impossible to make software fully

correct. However, the more test I do, the better the project it is. There is lots of testing

program showed in the testing design part. At least, the project should translate all of

them in to fully correct result.

Occam to C++ Translator

Shaoguang Miao C00131017 Page 41

Reference
[1] Geraint Jones, 2001

http://www.comlab.ox.ac.uk/people/geraint.jones/publications/book/Pio1/

