
Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 1

 Occam & C++ Translator

 Student Name: Shaoguang Miao

 Student ID: C00131017

 Supervisor: Joseph Kehoe

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 2

Table of Contents

Introduction .. 4

Where the idea comes from? ... 4

Introduction to Parallel Programming .. 4

Introduction to Occam ... 4

Introduction to Compiler Tools .. 5

Introduction to Target Language (C++) ... 5

Part 1 Occam ... 6

1.1 Introduction ... 6

1.2 Occam and Transputer ... 6

1.3 Different Versions OCCAM .. 7

1.3.1 Occam 1 ... 7

1.3.2 Occam 2 ... 7

1.3.3 Occam 2.1 .. 8

1.3.4 Occam Occam-π ... 8

1.4 The keywords of Occam .. 9

1.4.1 Primitive processes .. 9

1.4.2 Communication ... 9

1.4.3 Constructed Processes ... 10

1.4.4 Data Type & Variable .. 14

1.4.5 Channel and Channel Protocol .. 15

1.4.6 Channel Protocol.. 16

1.4.7 Timer .. 16

1.4.8 Procedure .. 17

1.4.9 Functions ... 18

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 3

Part 2 Compiler Tools ... 19

2.1 Introduction ...19

2.2 Lex & Yacc ..19

2.2.1 What the Lex & Yacc can do for us?.. 19

2.2.2 What are Lex & Yacc? .. 19

2.2.3 Example ... 20

2.3 ANTLR ..22

2.3.1 What is ANTLR and what is ANTLR useful? ... 22

2.3.2 What are the features of ANTLR? .. 23

2.3.3 The environment for ANTLR ... 26

2.4 The others ...29

Part 3 Parallel Programming ... 30

3.1 What’s parallel programming? ...30

3.2 Parallel Programming Models ..32

3.2.1 Message Passing Model ... 32

3.2.2 Threads Model .. 35

3.3 Suitable Development Languages ..39

3.3.1 Introduction to Java Programming Language ... 39

3.3.2 Introduction to C and C++ Programming Language 40

3.3.3 Comparison C, C++ and Java on Thread Control .. 41

Conclusion .. 42

Reference ... 43

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 4

 Introduction

My project is Occam to C++ translator. It means the final software should

translate the Occam programming language to C++.

 Where the idea comes from?

Occam is a parallel programming language that makes it easy to write a

program consisting of small parts (threads or processes) which could run

concurrency. Additionally, implementing communication between those small

parts is also not a difficult job. However, managing those small parts in C++

is not as easy as Occam. Because C++ is a more low-level programming

language, the programmer who wants to write a parallel program using C++

needs to consider more things than an Occam programmer. Communication

between those small parts is another difficult problem. Thus, we consider, if

we can build a software which could translate Occam to C++, the programmer

just need write the parallel part using Occam, then translate the Occam

program to C++, the software development should be easier than writing a

pure C++ program. That’s the reason for the title-- Where the idea comes from.

 Introduction to Parallel Programming

Parallel Programming is a kind of technology which could run multi-tasks on

the multi-core computer at same time. It improves the program execution

speed and makes calculation more efficiency than traditional program.

Basically, programmers divide the program into sets of different function

block, assign a thread (or process) for each function block and allow multi-

threads (process) running on the different CPU at same time. There are serval

ways to manage and schedule those function blocks. The detail will be given

in Part 3 of this document.

 Introduction to Occam

As I mentioned before, Occam is a parallel programming language which

could separate the program into different part. Programmer could assign one

thread for each part and manage those threads using special way in Occam.

There is away to let threads communicate with each other – channel which is a

special structure in Occam. Occam is a procedure programming language like

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 5

C. There are lots of special features which are not like some popular

programming, such as C/C++, Java, etc. The detail will be given in Part 1.

 Introduction to Compiler Tools

There sets of popular compiler tools (languages) existing. What they want to

do is translate one kind of syntax to another grammar. The programmer could

use compiler tools (languages) to build their own programming language. The

first compiler language is Lex & Yacc which is developed for Linux. However,

now, there are sets of tool we can use, such as ANTLR, Gold Parser,

Grammattica, Spirit, and, Flex & Bison. The detail will be given in Part 2.

 Introduction to Target Language (C++)

The Target Language is C++; it means the project product should translate

Occam to C++. There are some threads algorithms in C++ standard library, but

it’s not AN efficient or convenient way to use. Fortunately, there are some the

other kind of libraries from some the other developer we can use, like raw

threads (POSIX threads, Windows threads), MPI, Open MP, etc. The detail will

be given in Part 3.

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 6

Part 1 Occam

1.1 Introduction

There are four different versions of the Occam: Occam 1, Occam 2, Occam 2.1

and Occam PI. Occam is a parallel programming language developed by David

May at INMOS Limited (INMOS), Bristol, England. “It’s based on Tony Hoare’s

Communicating Sequential Process (CSP). The name is derived from William of Ockham

of Occam’s Razor frame. Occam’s razor or the ancient philosophical principle of “keep

things simple,” is attributed to William. “[01] The first version, Occam 1, has been

obsolete. The most widely know version of those three is Occam 2. The Occam-pi

is the newest version, now there are still lots programmers using Occam-pi to

implement mobile programs. The most important different feature of the Occam

is making concurrent programming simple. The programmer could implement

the multi-processes working at same time easily.

1.2 Occam and Transputer

After the Occam Model, INMOS wanted to develop hardware to make their

model more efficiency. This hardware has to be in the form of a very large scale

integration (VLSI) integrated chip (IC). The Transputer was made following this

idea.

 In 1977, a collaborative project between Oxford University and INMOS Limited began

work to design a microprocessor with input and output channels, making them easier to

connect together to produce networks of processors of arbitrary size. In 1982, the

transputer (TRANSistor comPUTER) emerged. For the T414 model the architecture

consists of:

 Reduced Instruction Set Computer (RISC) 32-bit processor

 Fast on-chip RAM (2 Kbytes)

 Hardware time-slicing features

 Four high-speed serial links (INMOS links)

The T414 operates at 10 MIPs. Each of the INMOS links provides two Occam channels -

one in each direction. Communication may occur concurrently with communication on

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 7

all other links. The synchronisation of processes at each end of the link is automatic and

needs no explicit programming.

The transputer reflects the Occam model and can be considered to be an Occam machine

and it provides a direct implementation of the occam process in its hardware. Although

occam2 is not an assembly language, it provides full control of the transputer with

regards system configuration, input/output and real-time interrupts and as such makes

programming in native assembler unnecessary.

Until recently, the only complete Occam compilers were for transputers. This has

restricted the use of the Occam language as transputers are not readily accessible.

Compilers to allow Occam to be run to UNIX work-stations would facilitate portability

between transputer and non-transputer systems. [02]

1.3 Different Versions OCCAM

There are four different versions of the Occam: Occam 1, Occam 2, Occam 2.1

and Occam PI-π. They are no big differences between them on the basic things.

The high version also could run the low version’s code. The high version just

adds some new features in.

 1.3.1 Occam 1

Occam 1 was the first version of this language. It’s developed by David

May at INMOS Limited (INMOS), Bristol, England. It come to the word is

because the programmer wants to make their parallel programming

easier. However, it’s too much simple to implement all the work the

people want to do.

This version just supported only the VAR data type, which an integral type was

corresponding to the native word length of target architecture, and arrays of only

one dimension. [03]

 1.3.2 Occam 2

The Occam 2 was developed by INMOS Ltd in 1987. This version was

added some new features which satisfy with the programmer to develop

concurrent programs and which make the Occam become to a high level

programming language. It not only added floating point, some data types,

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 8

like different sizes of integers (INT 16, INT 32), multi-dimensional arrays

into this version but also functions. Those features give important

information to the whole word that a new kind of programming language

could be used. Occam was also known by the programmer since this time.

 1.3.3 Occam 2.1

The next version of Occam language is Occam 2.1. It’s also developed by

INMOS, in 1994. Like Occam 2, it did change too much basic things, but

added some new features. New features include: [04]

 Named data types

 Named Records

 Packed Records

 Relaxation of some of the type conversion rules

 Crate New operators (e.g. BYTESIN)

 Implemented channel retyping and channel arrays

 Function could return fixed-length array.

 1.3.4 Occam Occam-π

Occam-π is final version for Occam. However it’s not from INMOS either.

Now, Kent Retarget developed Occam-π (or Occam-pi) as the variant of

the Occam programming at the University of Kent. The introduction of

elements of the π-calculus into Occam was reflected by its name,

particularly concepts involving mobile processes and data. The language

contains a significant number of extensions to Occam 2.1, including: [05]

 Build nested protocols

 Could create Run-time process

http://en.wikipedia.org/wiki/Occam_programming_language
http://en.wikipedia.org/wiki/Pi-calculus
http://en.wikipedia.org/wiki/Mobile_agent

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 9

 Build channels, data, and processes for mobile

 Recursion are available for users

 Protocol inheritance

 Array constructors are implemented

 Extended rendezvous

1.4 The keywords of Occam

 1.4.1 Primitive processes

Occam programs are built from processes. The simplest process in an

Occam program is an action. An action is an assignment, an input or an

output.

Assignment :=

The syntax is:

variable := expression

a,b,c := x, y+1, z+2

 1.4.2 Communication

Communication is an essential part of Occam programming. Values are

passed between concurrent processes by communication on channels.

Each channel provides unbuffered, unidirectional point-to-point

communication between two concurrent processes. The format and

type of communication on a channel is specified by a channel protocol

referenced in the declaration of the channel.

i. Input ?

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 10

An input receives a value from the channel on the left of the input

symbol (?), and assigns that value to the variable on the right of the

symbol. The value input must conform to the channel protocol and

be of the same as the variable to which it is assigned, otherwise the

input is not legal:

The syntax is:

 channel ? variable

ii. Output

An output transmits the value of the expression on the right of the

output symbol (!) to the channel named on the left of the symbol.

The value output must conform to the channel protocol; otherwise

the output is not valid.

The syntax is:

 channel ! expression

iii. SKIP and STOP

The primitive process SKIP starts performs no action and

terminates. The primitive process STOP starts, performs no action

and never terminates.

 1.4.3 Constructed Processes

i. Sequence

A sequence combines processes into a construction in which one

process follows another.

The syntax is:

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 11

 SEQ

 { Process}

A sequence can be replicated to produce a number of similar

processes which are performed in sequence.

The syntax for a replicated sequence extends the syntax for

sequences:

SEQ base expression for count expression

 {Process}

ii. Conditional

A conditional combines a number of processes each of which is

guarded by a Boolean expression. The conditional evaluates the

Boolean expressions in sequence; if a Boolean expression is found

to be true the associated process is performed, and the conditional

terminates. If none of the Boolean expressions is true the

conditional behaves like the primitive process.

Eg:

IF

x > y

order := gt

x < y

order := lt

TRUE

order := eq

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 12

iii. Selection

A selection combines a number of options, one of which is selected

by matching the value of a selector with the value of a constant

expression (called a case expression) associated with the option.

Eg:

CASE direction

up

x := x + 1

down

x := x – 1

iv. WHILE Loop

A WHILE loop repeats a process while an associated Boolean

expression is true.

Eg:

WHILE buffer <> eof

SEQ

in ? buffer

out ! buffer

This loop repeatedly copies a value from the channel in to out the

channel. The copying continues while the Boolean expression

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 13

buffer <> eof is true. The sequence is not performed if the Boolean

expression is initially false.

v. Parallel

A parallel combines a number of processes which are performed

concurrently.

The syntax of a parallel is similar to that of a sequence:

 PAR

 {Process}

vi. Alternation

An alternation combines a number of processes, only one of which

is executed. Each of the combined processes is guarded by a guard

which may or may not be ready to proceed. Examples of such

guards are inputs on channels and delayed inputs on timer

channels. The alternation performs the process associated with a

guard which is ready.

Eg:

 ALT

left ? packet

stream ! packet

right ? packet

stream ! packet

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 14

 1.4.4 Data Type & Variable

Values are classified by their data type. A data type determines the set

of values that may be taken by objects of that type and the set of

operators which may be applied to objects of that type. These are the

primitive data types built into Occam

Table 1. Basic Types in Occam [06]

 Declaring a variable

The declaration of a variable associates its name with its data type.

The syntax for the declaration and use of variables of any data type is;

 Data.type Variable.name

The declaration of an array with multiple dimensions is similar to other

declarations:

 [x][x] Data.type array.name

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 15

 1.4.5 Channel and Channel Protocol

Occam programs act upon Variables , and communicate using channels

and times. A variable has a value, and may receive a new value in an

assignment or input. Channels communicate values. Timers produce a

value which represents time.

A Communication channel provides unbuffered, unidirectional point-

to-point communication of values between two concurrent processes,

which are components of a parallel process or of constructions which

are themselves components of a parallel program. The format and type

of values passed on a channel is specified by the channel protocol. The

name and protocol of a channel are specified in a channel declaration.

The keyword CHAN is always followed by the keyword OF which is

followed by a protocol according to syntax elaborated below (page 47).

Channel types cannot be named, but protocols can.

The syntax is:

 CHAN OF protocol

Arrays of channels can be declared in the same way as arrays of

variables:

 [x]CHAN OF protocol (necessary?)

There is a subtle semantic distinction to be made between an array of

data type and an array of channels. An array of variables is itself a

variable, as it may receive a new value by assignment or input.

However, an array of channels is not itself a channel, as only single

components of the array may be used in input/output, but a means of

referencing a number of distinct channels identified by consecutive

subscripts. This distinction is not made in the description of the syntax

of channels.

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 16

 1.4.6 Channel Protocol

A channel communicates values between two concurrent processes. The

format and data type of these values is specified by the channel

protocol. The channel protocol is specified when the channel is

declared. Each input and output must be compatible with the protocol

of the channel used. Channel protocols enable the compiler to check the

usage of channels, and to ensure the same effect whether the sending or

the receiving process is ready to communicate first.

 1.4.7 Timer

Timers produce a value which represents the time, and allow processes

to be delayed until the time has reached or passed a particular value.

The use of timers is essential in most real time control systems. A timer

provides a clock which can be accessed by any number of concurrent

processes. The relationship between the time returned by an Occam

timer and real time is not defined by the language, i.e. implementations

may differ in the granularity of timers and consequently in their cycle

period.

A timer is declared in a manner similar to channels and variables.

Eg:

 TIMER variable.name

 [X] TIMER array.name

Another special timer input (called a delayed input) specifies a time,

after which the input terminates.

Eg:

clock ? AFTER t

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 17

Explanation: This input waits until the value of the timer clock is later

than the value of t. In other words, if c is the value of the timer clock,

then the input will wait until (c after t) is true. The value of t is

unchanged.

 1.4.8 Procedure

The keyword PROC, the name of the procedure, and a formal

parameter list enclosed in parentheses is followed by a process

indented two spaces, which is the body of the procedure. Any data type

may be used as a specifier following VAL, any type as a specifier

otherwise. The procedure definition is terminated by a colon which

appears on a new line at the same indentation level as the start of the

definition.

The syntax for a procedure instance is:

 PROC name (parameters)

 Process

 :

Eg:

PROC increment (INT x)

x := x + 1

INT y:

SEQ

 Increment(y)

Is equal to:

 INT y:

 SEQ

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 18

 X IS y:

 x:=x+1

 1.4.9 Functions

A function defines a name for a special kind of process, called a value

process. A value process produces a result of any data type, and may

appear in expressions. Value processes may also produce more than

one result, which may be assigned in a multiple assignment. Occam

functions are free from all side effects, as they are forbidden to

communicate or to assign to free variables. This helps to ensure that

programs are clear and easy to maintain.

Eg:

INT FUNCTION sum (VAL []INT values)

INT accumulator :

VALOF

SEQ

accumulator := 0

SEQ i = 0 FOR SIZE values

accumulator := accumulator + values[i]

RESULT accumulator

:

This function definition defines the name for the associated value

process. The type of the result of this function is INT. The result type or

types, which may be any explicit or named fixed size data types appear

in a comma separated list before the keyword function. For More

information, please look at Occam 2.1 Manual.

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 19

 Part 2 Compiler Tools

2.1 Introduction

Compiling is one of the most important parts of the project. How to translate the

Occam to C++ Programming Language is the point of the project. There are

sevral different ways to solution the problem I mentioned. For example: Lex &

Yacc, Antlr, Gold Parser, Grammattica, Spirit, and Flex &Bison. First two of them

will be introduced briefly: Lex & Yacc, and Antlr. All of them derive from the

Lex & Yacc which was produced by Stephen C.Johnson at AT&T for the Unix

operating system.

2.2 Lex & Yacc

 2.2.1 What the Lex & Yacc can do for us?

Lex & Yacc can help you to develop your programming language easily. Lex

& Yacc can help you to write a compiler for your language. Lex & Yacc can

read streams from the keyboard and translate to anything what you want.

 2.2.2 What are Lex & Yacc?

Briefly, Lex & Yacc is a kind of special programming language (compiler

tool) which gets a stream of characters from the input and translates it to

another format easily.

The program which has structured input can be divided into several

different functional units by Lex & Yacc. Furthermore, the Lex and Yacc can

print the context which we want on the screen according to the structured

input. For C program, the units are variable names, constants, and so on. Lex

will divide the program into sevRal different units. The units (which are

usually called tokens) are produced by lexical analysis, or lexing for short.

Lex also helps us taking the tokens and identifying them from the input

stream. Lex source is a kind of table of the units (described using regular

expression) and the corresponding fragments are output to Yacc. However,

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 20

the Lex can run BY ITSELF. We can get the whole token from the Lex, but we

also need the relationship between. Yacc will help us to organise the tokens

into new expression. Yacc will use a rule for those tokens and make them to

expression according to the new grammar like parser.

Here is the diagram for flow of how they are working:

[Dig.1]

 2.2.3 Example

There are two pieces of code IN Lex & Yacc shown below:

Lex:

%{

#include <stdio.h>

#include "y.tab.h"

%}

%%

[0-9]+ return NUMBER;

heat return TOKHEAT;

on|off return STATE;

target return TOKTARGET;

temperature return TOKTEMPERATURE;

\n /* ignore end of line */;

[\t]+ /* ignore whitespace */;

 %%

 Yacc:

Input Stream Token Parser

(Yacc)

Output

Stream
Lexer

(Lex)

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 21

 commands: /* empty */

 | commands command

 ;

command:

 heat_switch

 |

 target_set

 ;

heat_switch:

 TOKHEAT STATE

 {

 printf("\tHeat turned on or off\n");

 }

 ;

target_set:

 TOKTARGET TOKTEMPERATURE NUMBER

 {

 printf("\tTemperature set\n");

 }

 ;

 [07]

Brief explanation:

The Lex file defined serval tokens ([0-9], heat, on|off, target, temperature) to

the corresponding fragments (NUMBER, TOKHEATM, STATE,

TOKTARGET, TOKTEMPERATURE). The bottom two tokens don’t have

corresponding fragments, it means nothing will be happen when the Lex

getS those. The Yacc file defined serval functions for the tokens passed by

Lex.

command:

 heat_switch

 |

 target_set

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 22

This piece OF code defined the command; it will call heat_switch or

target_set.

heat_switch:

 TOKHEAT STATE

 {

 printf("\tHeat turned on or off\n");

 } ;

If the “heat” “on (or off)” passed in Lex, Lex will translate them to

“TOKHEAT” “STATE”, then pass them in the Yacc, Yacc will print “Heat

turned on or off” on the screen.

2.3 ANTLR

 2.3.1 What is ANTLR and what is ANTLR useful?

ANTLR stands for ANother Tool for Language Recognition. It’s also a

compile tools which can use in translators, compilers, recognisers and

static/dynamic program analysers. It’s like Lex and Yacc, but there only one

separated Lexer and Parser by terminal and non-terminal symbols. The lexer

rules will start with an uppercase letter and the parser rules with lower case

letter. Like:

1. declare : 'int' ID '=' INT ';

2. ID : ('a'..'z' | 'A'..'Z')+;

3. INT : '0'..'9'+;

First one is lexer rule and the parser rules are two of the rest. ANTLR mix

lexer and parser together, it makes the rules simpler than Lex & Yacc, but it

easy to confuse the programmer with those rules. Fortunately, it also can run

if we separate lex rules and parser rules in two files.

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 23

2.3.2 What are the features of ANTLR?

Actually, the Lex & Yacc and ANTLR is kind of same tools designed for

translate one language to the other. From the system supported level, the

ANTLR could run on the every system easily, the Lex & Yacc can run base on

the UNIX or Linux. From now on, there is lots of target language supported

by ANTLR, like C Programming Language, Python, Object – C, Java, C#, and

so on. For Lex & Yacc doesn’t have too much libraries. In grammar, there

are lots of same points between them, like basic operators:

o () - Parentheses. Used to group several elements, so they are treated as one

single token

o ? - Any token followed by ? occurs 0 or 1 times

o *- Any token followed by * can occur 0 or more times

o + - Any token followed by + can occur 1 or more times

o . - Any character/token can occur one time

o ~ - Any character/token following the ~ may not occur at the current place

[08]

There is a piece of ANTLR code shown below:

grammar Expr;

@header {

package test;

import java.util.HashMap;

}

@lexer::header {package test;}

@members {

/** Map variable name to Integer object holding value */

HashMap memory = new HashMap();

}

prog: stat+ ;

stat: expr NEWLINE {System.out.println($expr.value);}

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 24

 | ID '=' expr NEWLINE

 {memory.put($ID.text, new Integer($expr.value));}

 | NEWLINE

 ;

expr returns [int value]

 : e=multExpr {$value = $e.value;}

 ('+' e=multExpr {$value += $e.value;}

 | '-' e=multExpr {$value -= $e.value;}

)*

 ;

multExpr returns [int value]

 : e=atom {$value = $e.value;} ('*' e=atom {$value *= $e.value;})*

 ;

atom returns [int value]

 : INT {$value = Integer.parseInt($INT.text);}

 | ID

 {

 Integer v = (Integer)memory.get($ID.text);

 if (v!=null) $value = v.intValue();

 else System.err.println("undefined variable "+$ID.text);

 }

 | '(' e=expr ')' {$value = $e.value;}

 ;

ID : ('a'..'z'|'A'..'Z')+ ;

INT : '0'..'9'+ ;

NEWLINE:'\r'? '\n' ;

WS : (' '|'\t')+ {skip();} ; [09]

It almost seem as Lex and Yacc, but there is something the Lex and Yacc

doesn’t have.

 @header {

package test;

import java.util.HashMap;

}

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 25

@lexer::header {package test;}

@members {

/** Map variable name to Integer object holding value */

HashMap memory = new HashMap();

}

This is special part of the ANTLR named actions. It can control every piece

of cod which is following the conditions in the whole project. There is the

other kind of structure in ANTLR name Abstract Syntax Tree (AST). It

could be set in the options command. The example of the AST will show

below:

expression

: ^(unary_op expression)

| ^(CALL expression expressionList)

| ^(INDEX expression expression)

| primary

;

unary_op

:

UNARY_MINUS|UNARY_PLUS|UNARY_NOT|UNARY_BNO

T

;

primary

: ID

| INT

| FLOAT

| 'null'

; [10]

Explanation:

 ^(unary_op expression)

It means build a AST whish use unary_op as root and expression as

children. If the input is 4+6*5, the tree will be build like:

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 26

+

 4 *

6 5

2.3.3 The environment for ANTLR

There are server ways to run ANTLR program. There is one plug in

program for eclipse, but we just could write Java code for during the

ANTLR. There is also a plug in program for Visual Studio. But the

compiler I want to mention is ANTLRWorks. It’s an individual compiler

for ANTLR. The features will be shown in [11]:

 Only one window could use at one time

 highlight special syntax

 Build navigation tree for each rule

 User can jump to any rule or token definition

 Go To Rule

 Find usages of tokens or rules

 Find and Replace using regular expression

 Sensitive keyword, rule, and token auto-completion

 Fold rules and actions

 Tips and ideas

 Auto-indentation are available

 Refracturing - remove left recursion, extract or inline rule.

 Using special colour to show generated lexer or parser code

 The lexer and parser rule will be displayed by Syntax

diagram

 Unreachable alternative(s) also will be shown in syntax

diagram

 Display nondeterminism warning as ambiguous paths

through the syntax diagram

 Decision DFA will be highlighted

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 27

 Rule dependency graph

 Export syntax diagram, NFA and parse tree to bitmap image

or EPS file

 Perforce integration

 Maces key was blinded (Mac OS X only)

 Contextual menus

 Print

There is a diagram of the ANTLRWorks [Dig 2]:

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 28

 [Dig.2][12]

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 29

2.4 The others

Gold Parser, Grammattica, Spirit, Flex & Bison are also famous compilers

tool. But all of them are same like Lex & Yacc or ANTLR, the different is that

they add more functions in their compiler or tools. There are list for

comparison for all of the compiler tools shown in *Dig.3+.Even Antlr didn’t

include any features which gold parser has, it also has lots of own features

which will be given in next part.

 [Dig 3][13]

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 30

Part 3 Parallel Programming

3.1 What’s parallel programming?

Multiple processors computer could handle many calculations at the same time.

A large problem could be handled by dividing into some smaller parts, and

many those part could run on the computer concurrently, that’s we called

parallel programming.

Traditionally, programmers write serial programs to be executed. The programs

are written by a discrete series of instructions which will be executed one by one.

The program could run on the single computer which just has one Central

Processing Unit (CPU). Only one instruction which is in the program may just be

able to be executed by CPU at any moment. The Dig.4 will show this type below:

[Dig.4][14]

Parallel program have lots of small parts which could get resource and

calculation at any particular time. However, there is also some limitation of the

parallel program. It only could run on the multiple CPUs computer, if it wants to

run multiple parts at same time. Obviously, it also could run on the single CPU

process normally. For multiple CPUs computer, lots of instructions which are not

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 31

in the same parts of executing program could be executed simultaneously on

different CPUS. The Dig.5 will show this type below:

[Dig.5][15]

There are 4 different ways to perform parallel computing: bit-level, instruction

level, data, and task parallelism. I will not talk about this part on this document.

There are also lots models of parallel programming models in common use.

These models include [16]:

 Data Parallelism

This is where the same instructions are applied to different sets of data

concurrently

 Shared memory

Two or more processes can share one piece of memory when they are

running.

http://en.wikipedia.org/wiki/Bit-level_parallelism
http://en.wikipedia.org/wiki/Instruction_level_parallelism
http://en.wikipedia.org/wiki/Instruction_level_parallelism
http://en.wikipedia.org/wiki/Instruction_level_parallelism
http://en.wikipedia.org/wiki/Data_parallelism
http://en.wikipedia.org/wiki/Task_parallelism

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 32

 Remote memory operation

Every process can access the memory from another process without its

participations.

 Message Passing

The processes can communicate with each other by sending and receiving

messages.

 Thread

One single process could have multi-thread which could execute

indecently.

 Combined models

It composed of two or more models of the above

I will give some details about threads and Message Passing in this document.

3.2 Parallel Programming Models

3.2.1 Message Passing Model

i. What is the Message Passing Model

Message Passing Model is base on multiple processes which has multiple

objects run concurrency (multiple tasks). Each object has its own memory

space for computation. They communicate with each other by messages.

One object can request another object to do something by sending

messages. All those messages convey some form of information and

always pass argument back and forth. There are two types of message

definition shown in [17]:

 There are Meilir three types of messages are defined by Page-Jones:

1. Informative - send update information to one object.

2. Interrogative - ask some reveal information from one object

3. Imperative - take some action on one object, or another object

 There are four types of messages are defined by Grady Brooch :

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 33

1. Synchronous - receiving object is ready; it will start only when

it receives a message from a sender.

2. Balking - if the receiving object is not ready to accept the

massages sent from sending object, sending object will give it

up.

3. Timeout - sending object will not wait for more than a certain

time period for the receiving object to be ready to accept the

message.

4. Asynchronous - whether the receiver is ready to receive

messages, the sender can send a message to receiver without

any more considers.

ii.Implementations of Message Passing:

Lots of operations that are allowed by an implementation of message

passing model from the component of a message passing library, such as

PICL, PVM, PARMACS, P4, MPI, etc. They don’t target a special platform

for using. The detail will not be given in this document except MPI.

However, there is a list [18] which measure latency and bandwidth for the

MPI, MPL and PVMe/PVM libraries on the SP2. The table shown that the

MPI will run faster than any the other kind of way. The MPL is close to it.

 latency bandwidth

 (microseconds) (Mbytes/s) portable

 -------------- --------- --------

MPI-F 43 34 yes

MPL 45 34 no

MPICH 58 33 yes

PVMe* 83 31 yes

PVMe 220 27 yes

PVM**

RouteDirect 642 12 yes

DontRoute 1450 3 yes

* interrupts off

** in place packing

MPI-F = prototype IBM MPI

MPICH = ANL/MSU MPI [18]

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 34

iii. MPI (Message Passing Interface)

MPI is the most typical form for a Message Passing Model. It is not a

compiler, Language specification or a specific product or implementation.

It is a kind of specification for programmers not a library itself but rather

the specification of what such a library should be. The goal of the MPI is to

provide a more widely and normally used standard for the programmer

who want to write message passing programs. The MPI interface

specification has been defined for C/C++, Fortran Programs and attempts

to be a practical, portable, efficient and flexible interface.

The features of MPI are: [19]

 General

-- Guarantee to Communicators combine context and group for

message security

-- Guarantee to Thread safety

 Point-to-point communication

-- Buffers and derived data types was structured.

-- There are four modes for point-to-point communication: normal

(blocking and non-blocking), synchronous, ready (to allow access

to fast protocols), buffered.

 Collective

-- Both built-in and user-defined are collective operations

-- There are large number of data movement routines

-- Subgroups will be defined directly or by the other kind topology

iv. Advantages of MPI

 The advantages of MPI as stated in [20] are shown below:

 Standardization - MPI is a standard message passing library

which is supported on virtually all HPC platforms and has

replaced all previous message passing libraries.

 Portability –The source code which using the MPI standard could

run on a different platform without any modification.

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 35

 Performance Opportunities - Vendor implementations should be

able to exploit native hardware features to optimise performance.

 Functionality – MPI-1 defined Sets of routines alone.

 Availability - both vendor and public domain implementations are

available for the users.

3.2.2 Threads Model

Compare MP Model, I rather than Thread Model. The detail of thread model

will be shown after.

i. What is a thread?

We have to known what is a thread before us doing the parallel

programming. “A thread is a single sequence stream within in a process.” [21]

A thread is kind of structure of the operating system like process, but

smaller. Lots of people call it “light process”. There are two types of

thread user-level and kernel-level threads. The detail will not be given in

this document (Operating systems internals and design principles (See

reference [23]) gives all of this information citation). So what’s the different

between process and threads?

ii. Differences between process and threads.

A process is created by operating system which will handle program

actions. Process contains the information about program resource and

program execution state. It has:

 Process ID

 Environment

 Working Directory

 Program instructions

 Registers

 Stack

 Heap

 File Descriptors

 Signal actions

 Shared Libraries

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 36

 Inter-process communications tools

Threads use and exist within process, but those could run independently

in the operating system. Like process, the thread also is an entity which

includes:

 Thread ID

 Stack pointer

 Registers

 Scheduling properties (long term, short term, etc)

 Set of pending and blocked signals

 Thread specific data.

Unlike process, threads did have their own memory. All of threads which

are in same process share same memory space. And the all those threads

are also share the same resource. Like the Dig.3 shown below [Dig6]:

[Dig.6][22]

In this model, multithreads could run as the small part of program in

multiprocessors computer. Here, we just call more than two threads

which belong to same process multithreads. Multithreaded process model

and single-thread process model shown below [Dig.7]:

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 37

 [Dig.7][23]

iii. Implementations:

From a programming perspective, threads implementations include:

 A Library which contains parallel source code

 A set of compiler embedded parallel source code

There are lots of compilers embedded parallel source codes, like Visual

Studio, Eclipse, QT, Netbeans, Open MP, etc. There are just a few libraries

which are professional for parallel programming, like POSIX Threads

(Pthreads), Threading Building Blocks (TBB), Boost Threads, etc. The

detail of TBB will be given following.

 TBB

Threading Building Block (TBB) is a C++ library which was developed by

Inter Corporation for writing program that has multiple threads.

“The library consists of data structures and algorithms that allow a programmer

to avoid some complications arising from the use of native threading packages

http://en.wikipedia.org/wiki/Multithreading

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 38

such as POSIX threads, Windows threads, or the portable Boost Threads in which

individual threads of execution are created, synchronized, and terminated

manually.” [24]

TBB doesn’t require any special languages or compilers; it could run on

the compiler which supports ISO C++. Programs writing by TBB could run

on the single processor system, as well as multiple processors.

Additionally, it fully supports nested parallelism, so you can build a large

parallel program by putting sets of smaller component together although

it’s not a good way to do. As a high level library, the goal of the TBB is

move programmer’s focus from threads to tasks; it means that the

programmer will think what to do instead of how to do it during

development.

Advantage’s of TBB [25]

1. Threading Building Block enables you to specify tasks instead of threads.

Because threads are low-level, heavy constructs that more close to the

hardware; it’s very hard to control. The programmer who uses level

normal threads has to map logical tasks on to thread. However, the

Threading Building Block provides a kind of automatically schedules

tasks on to threads. It makes source code easier to be written and

understand. More important, it changes the design opinion of

programmer from how to do to what to do.

2. Threading Building Block targets threading for performance.

Most general-purpose threading packages support many different

kinds of threading; the result of this opinion is making those packages

to be solution rather than a foundation. Nevertheless, the TBB focuses

on particular goal of parallelising computationally intensive work,

simpler solutions.

3. Threading Building Block is compatible with other threading packages.

4. Threading Building Block emphasizes scalable, data-parallel programming.

http://en.wikipedia.org/wiki/POSIX_threads
http://en.wikipedia.org/wiki/Boost_C%2B%2B_Libraries

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 39

 In multithreads programming, we divide our program into many

different functions block and assign a separate thread to each function

block. Because of the number of function is fixed, so the thread cannot

be scaled easily. In contrast, TBB emphasizes data-parallel

programming, it allow using multiple threads to work most efficiency

together. Besides, there are sets of algorithm for avoiding some classic

problem of multithreads, such bottlenecks.

5. Threading Building Block relies on generic programming.

iv. Comparison with other parallelism

Whatever using raw thread interface, such as POSIX thread (pthreads),

Windows threads which are using shared memory parallelism, Boost

Threads which are very portable raw threads interface or MPI which suit

for amount of threads run concurrence, the programmer have to manage

every detail of each thread. Raw threads and MPI represent the assembly

languages of parallelism which offer maximum flexibility, but at a high

cost in terms of programmer effort, debugging time, and maintenance

costs. However, Threading Building Block provides sets of way to map

tasks onto processor cores explicitly instead of controlling each thread.

“With TBB, programmers could express more concurrency and finer-grained

concurrency than would be possible with threads, leading to increased

scalability.” [26] Additionally, TBB is a library which could run on

different platform easily, such Windows, Mac, Linux/Unix.

3.3 Suitable Development Languages

There are sets of development languages we can use for developing. I just want

to compare three of them C, C++, and Java in this document.

3.3.1 Introduction to Java Programming Language

Java was developed by James Gosling at Sun Microsystems and released in

1995. As an Object-Oriented Programming Language, it become more and

http://en.wikipedia.org/wiki/James_Gosling
http://en.wikipedia.org/wiki/Sun_Microsystems

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 40

more popular since it appeared. It’s the most close to human language in

those three programming languages. It means the developer could use Java to

develop software will be easier than the others.

The goal of Java is making development easier. Actually, it got its goal in

those years. Java has its own mechanism for collect rubbish during the

program is running. When a programmer creates a variable, Java will allocate

a piece of memory for it. Java will free the space that is no longer to be

referenced automatically. The Garbage Collection system will implement to

free the memory that hasn’t been referenced in the program. The programmer

also needn’t to worry about the problem like which element the pointer is

point to. They need not to free the space that he just allocates, because the

pointer disappeared in the Java.

The most important feature of Java should be Platform-Independent. Java

could run across the different operating system and hardware platforms

which support JVM (Java Virtual Machine) without writing and compiling

twice. This is the biggest different between Java and the other programming

language. The reason that Java could run across multiple platforms is the

origin Java code is not actually running in the CPU but JVM. JVM is a

translator that could translate the Java Byte code to the machine code that the

system and hardware could recognize. It means that Java code doesn’t be

translated into machine code by compiler but Java byte code which could run

on the JVM. It’s exactly like anything has two sides- wonderful and terrible,

Java code doesn’t be translate into machine code immediately but Java Byte

Code, it become slower than the other languages.

3.3.2 Introduction to C and C++ Programming Language

Compare to Java and C++, C programming language is close to hardware. It

means it could run on the CPU extremely efficiency and could save more time

for users. C is a procedure programming language which the programmers

have to write every piece of detail in program. Like Java C++ is also an Object-

Oriented Programming Language. Although, they are even different type of

programming language, they still have lots of commons. That’s the reason I

want to put them together to introduce.

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 41

Because of C/C++ are closer to hardware, they are control hardware easier

than Java. C/C++ Programming Language are just like a bridge from the

programmer to the hardware of the computer. They just need the compiler to

translate what the programmer means, and then the computer will do the

thing the programmer wants to. Besides, they do not rely on the compiler or

something else, because they just care about the hardware of the computer.

Once the code run in one machine, it could easy to adapt some different

machines. It will be no problems if the basic thing is the same.

The most important features in C/C++ Program Language would be Pointers.

Pointer is a very useful and complex data structure. The value’s address is

stored in the pointer. The pointer could store not only the basic data type’s

(int, float, double, etc.) address, but also the location of the function and

array.

“The run-time representation of a pointer value is typically a raw memory address

(perhaps augmented by an offset-within-word field), but since a pointer's type

includes the type of the thing pointed to, expressions including pointers can be type-

checked at compile time.” [27]

 The pointer almost could be used wherever and any types the programmer

wants. It would be more flexible than the other language.

3.3.3 Comparison C, C++ and Java on Thread Control

All of them have their own thread library. All of those libraries provide

thread creating, deleting and controlling. They are easily to be used for

programmers. However, all of them are not very well to implement how to

communication between threads. They didn’t define a very well strategy to

handler passing information and control each other in their own library. For

Occam Translating, the channel (which have introduced in part 1) is an

important part. How to handle this part is one point of this project.

Fortunately, I got some extra libraries from Internet, which has been

introduced in part 2 of this document. For C programming Language, TBB

doesn’t support it now but Java and C++ could use it easily. Between Java and

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 42

C++, I prefer C++ because it’s faster and flexible. For the fist vision project, I

won’t let it to run on the system beside Windows. On the other hand, I have

learned C programming for a couple of yeas. It’s easier to use C++ than Java.

Thus C++ would be my first choose. As I mentioned before (Part 2), C++

would not support C++ but C. Thus, actually, C and C++ this would be mixed

using together in the project.

 Conclusion

The project (Occam, C++ Parser) will translate the Occam which is a parallel

programming language to C++. We want to decrease the development time for

C++ programmers who want write a parallel program. We want to help

programmer work more efficiency on parallel programming.

This document introduced what’s the parallel programming (in part 3), what’s

Occam (in part 1), what’s and how to use compiler tools, which way to

implement parallel programming language is better and easier in C++. The detail

of Occam, like how the Occam works and the most key words of Occam (in

part1) were introduced in this document. For compiler tools, ANTLR was the

most popular and important in this time, a lot of information of ANTLR was

given in part 2, like how ANTLR works, why I want to use ANTLR to be parser

language in my project. Additionally, Lex & Yacc is also another important

parser language for introducing, because it’s the original model of ANTLR.

Besides, the comparison of different parser language and tools was also given.

Finally, the target language libraries introduction has been given in part 3. Two

different ways, message passing and threads are the point of target libraries.

Especially, TBB which was developed by Intel is the most important part of

target libraries. Hopefully, I can use TBB to implement parallel programming in

C++.

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 43

 Reference

[01] Dr.Daniel C.Hyde. 1995. Introduction to the Programming Language Occam.

www.eg.bucknell.edu/~cs366/occam.pdf

[02] Martin Stuart Mamo, 1995

http://freespace.virgin.net/martin.mamo/dissert.html#intro

[03] WIKIPEDIA, 2009

 http://en.wikipedia.org/wiki/Occam_%28programming_language%29

[04] WIKIPEDIA , 2009

 http://en.wikipedia.org/wiki/Occam_%28programming_language%29

[05] WIKIPEDIA, 2009

 http://en.wikipedia.org/wiki/Occam_%28programming_language%29

[06] SGS-THOMSON Microelectronics Limited,1995.

 http://wotug.org/occam/documentation/oc21refman.pdf

[07] Bert Hubert ,2001

 http://ds9a.nl/lex-yacc/cvs/lex-yacc-howto.html

[09] Johannes Luber ,2008

http://www.antlr.org/wiki/display/ANTLR3/Quick+Starter+on+Parser+Grammar

s+-+No+Past+Experience+Required

[09] ATNLR V3

 http://www.antlr.org/works/help/tutorial/calculator.html

[10] Terence Parr, 2007

http://en.wikipedia.org/wiki/Occam_%28programming_language%29
http://wotug.org/occam/documentation/oc21refman.pdf
http://www.antlr.org/works/help/tutorial/calculator.html

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 44

 The Definitive ANTLR Reference Building Domain-specific Language

[11] Jean Bovet

http://www.antlr.org/works/index.html

[12] Terrence Parr. Antlr

http://www.antlr.org/works/screenshots/editor.jpg

[13] Gold Parser

http://www.devincook.com/goldparser/about/comparison-parsers.htm

[14] Blaise Barney , 2009 Introduction to Parallel Computing

 https://computing.llnl.gov/tutorials/parallel_comp/#Whatis

[15] Blaise Barney , 2009. Introduction to Parallel Computing

 https://computing.llnl.gov/tutorials/parallel_comp/#Whatis

 [16] Maui High Performance Computing Center,1996

http://www.hku.hk/cc/sp2/workshop/html/message_passing/message_passing.ht

ml#message1

[17] Devdaily.com

http://www.devdaily.com/java/java_oo/node14.shtml

[18] Maui High Performance Computing Center ,1996

http://www.hku.hk/cc/sp2/workshop/html/message_passing/message_passing.ht

ml#message2

[19] William Gropp The Message-Passing Interface

http://www.mcs.anl.gov/research/projects/mpi/tutorial/gropp/node16.html#Nod

e16

http://www.antlr.org/works/index.html
http://www.antlr.org/works/screenshots/editor.jpg
http://www.devincook.com/goldparser/about/comparison-parsers.htm
http://www.mcs.anl.gov/research/projects/mpi/tutorial/gropp/node16.html#Node16
http://www.mcs.anl.gov/research/projects/mpi/tutorial/gropp/node16.html#Node16

Occam & C++ Translator – Research Report

Shaoguang Miao C00131017 Page 45

 [20] Blaise Barney ,2009

https://computing.llnl.gov/tutorials/mpi/

[21] kent

http://www.personal.kent.edu/~rmuhamma/OpSystems/Myos/threads.htm

[22] Blaise Barney , 2009, Introduction to Pthreads

 https://computing.llnl.gov/tutorials/pthreads/

[23] William Stallings.2005. Operating systems internals and design principles (Fifth

Edition). Prentice Hall, 2005

[24] WIKIPEDIA, 2009

http://en.wikipedia.org/wiki/Intel_Threading_Building_Blocks

[25] Inter Corporation

http://www.threadingbuildingblocks.org/uploads/81/91/Latest%20Open%20Sour

ce%20Documentation/Tutorial.pdf

[26] James Reinders, 2007

Inter Threading Building Block—Out fitting C++ for Multi-core Processor

Parallelism

[27] WIKIPEDIA, 2009

http://en.wikipedia.org/wiki/C_(programming_language)#

