
Institute of Technology, Carlow
B.Sc. in Software Engineering

CW228

Specification Manual

C Maintenance Tool

Name: Anna-Christina Friedrich

ID: C00132716

Supervisor: Dr. Christophe Meudec

Submission Date: 11th December 2009

Table of Contents
1. Vision..3

1.1. Introduction...3
1.2. Positioning..3

1.2.1 Business Opportunity...3
1.2.2 Problem Statement...3
1.2.3 Product Position Statement..3

1.3 Stakeholder Descriptions...3
1.4 Product Overview..4

1.4.1 Product Perspective..4
1.4.2 Summary of System Features..4

2. Use Case Diagram..5
3. Use Cases..6

3.1 analyseSourcefile ..6
3.2 createHtml ...6
3.3 renameIdentifier...7
3.4 renameAll...7

4. Supplementary Specification..9
4.1 Introduction..9
4.2 Functionality..9
4.3 Usability...9
4.4 Reliability...9
4.5 Performance...10
4.6 Supportability...10
4.7 Implementation..10
4.8 Interfaces..10
4.9 Legal Issues..11

5. Example Output..12
5.1 Sourcefiles...12

5.1.1 example.c...12
5.1.2 myCalc.h..12
5.1.3 myCalc.c..13
5.1.4 do.h...13
5.1.5 do.c...13

5.2 Output ...14

2

1. Vision

1.1. Introduction
The aspired maintenance tool for C language(from now on called 'CMT') provides cross referencing

of all identifiers within a C sourcefile. It also allows the user to rename certain identifiers and to

create html output files. C89 Standard will be required for the C input files.

1.2. Positioning

1.2.1 Business Opportunity
Existing maintenance tools have a lack of reliability. They don't consider the scope of variables

while crossreferencing and don't include preprocessing commands. According to researches, C is

the second most used programming language in the internet. Therefore there is demand on a

reliable, easy to use maintenance tool, that considers the mentioned lacks.

1.2.2 Problem Statement
There is a big problem with existing maintenance tools for C according to the reliability. It is

important that identifiers are ordered by their scope, so that the code is always executable,

particularly while renaming. Furthermore a solution is needed to handle preprocessor commands,

because those include identifiers as well, but are not legal C code. Building a maintenance tool,

which provides crossreferencing for each identifier, with special focus on scope and preprocessing

is a solution.

1.2.3 Product Position Statement
This product CMT is a crossreferencing tool for C language and its main stakeholder is a software

developer, who requires a tool to maintain large files of C code easily and reliably. My product

provides a system that crossreferences each identifier of C sourcecode using html. Additionally

there is also the facility of renaming variables and I aim at the tool becoming a free plugin. Unlike

past maintenance tools, my product is more reliable and easy to use.

1.3 Stakeholder Descriptions
Stakeholders are software engineers and students attending courses like software engineering. They

want the tool to be first of all reliable, as well as easy to handle and to have a good documentation.

3

1.4 Product Overview

1.4.1 Product Perspective
CMT will be used for maintaining existing code by software engineers as well as software

engineering students.It will provide merely few services to users, won't interact with other systems

and there is just few interaction between user and system as well.

1.4.2 Summary of System Features
• Building a crossreferenced datastructure for each identifier considering scope, preprocessing

• providing each identifier as an html output file

• possibility to choose an identifier and renaming it without changing the meaning of the code

• use as independent software or as an plugin for an existing development tool

4

2. Use Case Diagram

5

Figure 1: Use Case Diagram for the C Maintenance Tool (CMT)

3. Use Cases

3.1 analyseSourcefile
Use case: analyseSourcefile

Scope: CMT application

Primary actor: software engineer

Stakeholders and interests:

software engineer: wants reliable and performant outcome

Preconditions: none

Postconditions: a datastructure with each occurence of every identifier was created

Main success scenario:

1. user starts the system and passes the sourcefile that is to analyse

2. system parses the sourcecode

3. system creates a datastructure in which each identifier is stored with its occurences

4. system provides definition line,column and name of each identifier stored in a textfile

Extensions:

2a. there is an identifier that can't be refactored

1. system signals error and refuses the referencing of the code

3.2 createHtml
Use case: createHtml

Scope: CMT application

Primary actor: software engineer

Stakeholders and interests:

software engineer: wants reliable and performant outcome

Preconditions: a datastructure and a textfile was generated

6

Postconditions: html files that name each identifier with its definition and occurences

Main success scenario:

1. user chooses html facility

2. system builds html files out of the given datastructure and/or textfile

Extensions: none

3.3 renameIdentifier
Use case: renameIdentifier

Scope: CMT application

Primary actor: software engineer

Stakeholders and interests:

software engineer: wants reliable and performant outcome

Preconditions: a datastructure was generated

Postconditions: one or more identifiers are renamed in each appearance

Main success scenario:

1. user chooses rename facility and passes the identifier and its definiton line that is supposed

to be renamed

2. based on the given datastructure, the system changes the name of each occurence of the

chosen identifier and creates a new sourcefile including the changes

Extensions: none

3.4 renameAll
Use case: renameAll

Scope: CMT application

Primary actor: software engineer

Stakeholders and interests:

7

software engineer: wants reliable and performant outcome

Preconditions: a datastructure was generated

Postconditions: each identifier is renamed in each appearance

Main success scenario:

1. user chooses facility to rename each identifier

2. based on the given datastructure, the system changes the name of each occurence of each

identifier automatically and stores the modificated sourcefile as a new file

Extensions: none

8

4. Supplementary Specification

4.1 Introduction
This document is the repository of all CMT requirements not captured in the

use cases.

4.2 Functionality
(Functionality common across use cases and example output)

Accuracy
The tool has to provide correct and appointed outcome, especially while renaming. This will be

tested by using the facility 'renameAll'. After compiling the original file and the modificated file, the

outcome will be compared. If the outputs are equal, the tool was successfull in renaming all

identifiers.

Interoperability
The ability of cooperating with different systems will be achieved with a plugin of the tool for

Eclipse IDE.

4.3 Usability
Human Factors
Although users like software engineers are commonly used to handle new, unknown systems, an

understandable user manual supports the first steps of handling the system. CMT will be based on

command line, but the user does not have to spend much effort on learning to work with the system.

Handling will be easy.

4.4 Reliability
Fault Tolerance
The tool has to work absolutely correct, otherwise the whole input code can become invalid.

Therefore it is important to catch exceptions before code is changed and to interrupt the system. The

user gets an error information, why the action cannot be continued.

Recoverability
The facility of undoing an action needs to be supported, if the user made e.g. a mistake while

renaming. This will be done by duplicating the given sourcefile, so that there is still the original file

9

and a modificated one.

4.5 Performance
Performance is always important but under the conditions of CMT, the performance has minor

priority. Nonetheless the best performance will be assured with using an adequate programming

language(Java, see 4.7) that handles large datastructures the best.

4.6 Supportability
Adaptability
First of all the tool will run on Windows as a executable jar file. It is also aimed at providing a

support for Linux systems.

Maintainability
CMT system will be structured into layers and built up with the help of design patterns, therefore a

good maintainability can be ensured. Furthermore Javadoc annotations will be used to make

maintaining the sourcecode of CMT more comfortable.

4.7 Implementation
Programming Language
To support maintainability and performance, the programming language will be Java.

Free Open Source Components
There have already been made decisions about free tools that support the development of CMT:

• Eclipse IDE for Java Developers

• Antlr and AntlrWorks for parsing input

• PDE, the plugin development environment for Eclipse

• JUDE/Community, free UML modeling tool

• Mozilla Firefox to display html documents

4.8 Interfaces
Hardware
none

Software Interfaces
It is aimed to provide a plugin for an IDE.

10

4.9 Legal Issues
CMT won't be a commercial tool, neither it is planned to get released. Therefore I don't have to

worry about legal issues.

11

5. Example Output

5.1 Sourcefiles
The following files will be exemplary analysed, i. e. each identifier is listed with its name,

definition, declaration and occurences. Pre-defined identifier(like int, char...) and system files(like

stdio.h, stdlib.h...) are excluded from analysing. This will probably be realised by adding certain

rules to the grammar used in parsing generator. Parameters and variables which are only used within

macros won't be referenced for now. Column numbers are given exemplary for the first three

identifiers, but they will be given for each identifier in the executable tool.

5.1.1 example.c
1 #include <stdio.h>
2 #include "myCalc.h"
3 #include “do.h”
4
5 int main(void){
6 int index;
7 int firstNum = 12;
8 int secondNum = 13;
9
10 printf("First summand is: %d", firstNum);
11 printf("\nSecond summand is: %d", secondNum);
12
13 int sum;
14 sum = plus_int(firstNum,secondNum);
15 printf("\n\nThe sum is: %d", sum);
16
17 do{
18 int index = 2;
19 sum+=index;
20 }while(sum<MAXSIZE);
21
22 index = MAKEIT(sum,secondNum);
23
24 write(“This is a string!”);
25 write(“And so is this.”);
26
27 return 0;
28 }

5.1.2 myCalc.h
1 #ifndef myCalc_h
2 #define myCalc_h
3
4 #define MAXSIZE 100
5
6 int plus_int(int, int);
7

12

8 double plus_double(double, double);
9
10 #endif

5.1.3 myCalc.c
1 #include “myCalc.h”
2
3 int plus_int(int inum1, int inum2){
4
5 return (inum1+inum2+MAXSIZE);
6 }
7
8 double plus_double(double dnum1, double dnum2){
9
10 return (dnum1+dnum2);
11 }

5.1.4 do.h
1 #ifndef do_h
2 #define do_h
3
4 #define MAKEIT(one, two) (one+two)
5
6 void write(char*);
7
8 int readInt();
9
10 #endif

5.1.5 do.c
1 #include “do.h”
2 #include “myCalc.h”
3
4 void write(char* text){
5
6 printf(“%s”, text);
7 }
8
9 int readInt(){
10
11 int read;
12 scanf(“%d”, &read);
13 return (read+MAXSIZE);
14 }

13

5.2 Output
variables
index
type: int

definition: example.c line 6 column 9

occurances: example.c line 22 column 5

index
type: int

definition: example.c line 18 column 15

occurances: example.c line 19 column 16

firstNum
type: int

definition: example.c line 7 column 9

occurances: example.c line 10 column 36

example.c line 14 column 20

secondNum
type: int

definition: example.c line 8

occurances: example.c line 11

example.c line 14

example.c line 22

sum
type: int

definition: example.c line 13

occurances: example.c line 14

example.c line 15

example.c line 19

example.c line 22

inum1

14

type: int

definition: myCalc.c line 3

occurances: myCalc.c line 5

inum2
type: int

definition: myCalc.c line 3

occurances: myCalc.c line 5

dnum1
type: double

definition: myCalc.c line 8

occurances: myCalc.c line 10

dnum2
type: double

definition: myCalc.c line 8

occurances: myCalc.c line 10

functions
plus_int
return type: int

declaration: myCalc.h line 6

definition: myCalc.c line 3

occurances: example.c line 14

plus_double
return type: double

declaration: myCalc.h line 8

definition: myCalc.c line 8

occurances: none

write
return type: void

declaration: do.h line 6

15

definition: do.c line 4

occurances: example.c line 24

example.c line 25

readInt
return type: int

declaration: do.h line 8

definition: do.c line 9

occurances: none

preprocessor
MAXSIZE
definition: myCalc.h line 4

occurances: myCalc.c line 5

do.c line 13

example.c line 20

MAKEIT
definition: do.h line 4

occurances: example.c line 22

sources
myCalc.c C:\Program Files\Common Files

myCalc.h C:\Program Files\Common Files

do.c C:\Program Files\Common Files

do.h C:\Program Files\Common Files

example.c C:\Program Files\Common Files\my_project

16

	1. Vision
	1.1. Introduction
	1.2. Positioning
	1.2.1 Business Opportunity
	1.2.2 Problem Statement
	1.2.3 Product Position Statement

	1.3 Stakeholder Descriptions
	1.4 Product Overview
	1.4.1 Product Perspective
	1.4.2 Summary of System Features

	2. Use Case Diagram
	3. Use Cases
	3.1 analyseSourcefile
	3.2 createHtml
	3.3 renameIdentifier
	3.4 renameAll

	4. Supplementary Specification
	4.1 Introduction
	4.2 Functionality
	4.3 Usability
	4.4 Reliability
	4.5 Performance
	4.6 Supportability
	4.7 Implementation
	4.8 Interfaces
	4.9 Legal Issues

	5. Example Output
	5.1 Sourcefiles
	5.1.1 example.c
	5.1.2 myCalc.h
	5.1.3 myCalc.c
	5.1.4 do.h
	5.1.5 do.c

	5.2 Output

