

Crypt Predict

Functional Specification

BSc (Hons) in Software Development

Name: Adam Eaton

Student ID: C00179859

Year: 4th Year

Supervisor: Lei Shi

Due-Date: 18 - 04 - 2018

Table of Contents

1. Abstract 2

2. Introduction 3

3. Target Market 3

4. Metrics 3

5. System Architecture 4

5.1. Web Hosted Architecture 4

5.2. Locally Hosted Architecture 5

5.3. Data Collection Architecture 6

5.4. Technology Overview 7

6. Supplementary Specification 8

6.1. Functionality 8

6.2. Usability 8

6.3. Reliability 8

6.4. Performance 9

6.5. Supportability 9

7. Iteration Plan 10

7.1. Iteration 1 10

7.1.1. Planned Schedule of Work 10

7.1.2. Changes during Iteration 10

7.2. Iteration 2 11

7.2.1. Planned Schedule of Work 11

7.2.2. Changes during Iteration 11

7.3. Iteration 3 12

7.3.1. Planned Schedule of Work 12

7.3.2. Changes during Iteration 12

1 | Functional Specification

1. Abstract

The purpose of this document is to set out both the core functional and nonfunctional
requirements for this project. It will cover the aforementioned requirements as well as topics
including the target market of the project, the metrics by which we can assess the success of
the project and the planned work breakdown for each iterative stage within the project.

2 | Functional Specification

2. Introduction

This project is intended to act as a Cryptocurrency price prediction platform which can be
used to assist investors in making more educated decisions when decided to buy / sell. The
project was ultimately designed with the idea of making it easy to implement additional
cryptocurrencies as well as making it simple to use for any given user.

The project allows for a user to select their chosen cryptocurrency(s) between Bitcoin,
Ethereum and Litecoin, they then choose whether they want to generate a future price
prediction or to test the accuracy of the model, and finally they select the period of time
between each prediction interval. After the user selects their chosen parameters, the
application will run the selected method and forward them to a page displaying the graphs
generated from their chosen parameters.

The project requires a significant amount of data to run it’s different methods, each method
requires a minimum of 27000 entries. This data is collected through querying the OkCoin
API every 20 seconds to retrieve information regarding the cryptocurrencies, the returned
JSON is then parsed and the chosen information is stored in separate CSV files for each
cryptocurrency.

3. Target Market

This project is a tool that is created with existing cryptocurrency investors and potential
investors in mind. The hope is that these users can utilise the project to assist them in making
better educated decisions when trading cryptocurrency.

4. Metrics

As the nature of this project is the prediction of future prices there are several metrics readily
available to assess the success of the project. Naturally the a key metric will be whether or
not the planned functionality has been successfully implemented, additionally the overall
ease of using the application and the accuracy of the predictive algorithm.

3 | Functional Specification

5. System Architecture

This application is primarily a web based application, however it can also be ran on a local
machine, additionally the data collection process should be ran from a local machine. Within
this section we will break each of these different architectures down into their own
sub-sections as well as an overview of the technologies used within the overall architecture.

5.1. Web Hosted Architecture

The web hosted application will retain the core functionality of the application, however due
to restrictions enforced by the hosting service the data collection functionality and the error
notification functionality could not be implemented. As such they will not be included in the
architecture diagram.

The Web Server will act as the point of interaction between the User and the underlying
code. The user will submit a request to the Web Server with their choice of parameters, and
based on those parameters the predetermined code segments will be executed. Regardless of
method chosen the Web Server is guaranteed to interact with both the Plotly API and the
CSV Files when running. The CSV Files are used as a store for all data regarding each of the
individual cryptocurrencies as well as the data regarding accuracy score of predictions made.
The Plotly API is utilised whenever the Web Server needs to generate a graph, selected data
is passed to the API which returns HTML code for a graph displayed the previously passed
data, this graph code is then passed as a parameter to the Web Server to be displayed within
the results page.

4 | Functional Specification

5.2. Locally Hosted Architecture

By locally hosting the application the user will be able to utilise the functionality which was
restricted by the hosting service, those being the use of Slack to send notifications of runtime
errors, as well as running the Data Collection script to gather new information on prices. For
the purpose of this diagram I have excluded the Data Collection Architecture and will discuss
that in the next section.

The architecture of hosting the application locally is extremely similar to the architecture of
the web hosted alternative, the main difference between the two is the additional use of the
Slack API. This API allows the user to generate and send slack messages to their chosen
Workspace and even a specific channel within that workspace. The messages generated are
based on a pre-written string detailing the file and the function in which the error occurred,
additionally the most recent error on the stack is appended to the end of the message for more
detailed information regarding exactly which error has occurred.

5 | Functional Specification

5.3. Data Collection Architecture

The Data Collection Architecture is relatively simple, it gives a clear idea of the process of
the collection and the storage of the information. The Data Collection script should be ran as
its own process however through the use of Multi-Threading and scheduling it could
hypothetically be made an addition to the core application.

The architecture diagram is similar to the previously shown diagrams with the exception of
the lack of a user, due to that the script should be ran as its own process, and the replacement
of the Plotly API with the OKCoin API.

The Data Collection process involves the script running a series of queries to the OKCoin
API every 20 seconds, specifically one for each of the Cryptocurrencies. The returned JSON
from these queries is then parsed for the information regarding the current date in epoch
value, the current price of the chosen cryptocurrency, the volume of bids and the volume of
asking prices. These values are then converted to a comma separated string and stored in
their designated CSV file and a ‘Tick’ message is printed to the console, acting as a means of
recognising the script is still executing. If an error occurs during this process an error
message is generated and sent to the provided Slack channel.

6 | Functional Specification

5.4. Technology Overview

Below are the intended core technologies that will be used within the application, each will
have been discussed in more detail in the research document.

● Python 3.6 as the core programming language.
● Flask as the Web Framework to handle the HTTP requests.
● Bootstrap to reduce the amount of time spent developing the front facing elements of

the application.
● Plotly as the means to graph the generated data.
● Bitcoin, Ethereum and Litecoin as the chosen Cryptocurrencies.
● OKCoin’ API to retrieve the price information for the chosen cryptocurrencies.
● CSV Files to act as datastores.
● Slack will act as a means of notifying the developer of runtime errors.
● PythonAnywhere as the hosting service.

7 | Functional Specification

6. Supplementary Specification

6.1. Functionality

● The APIs used within the project need to be available to interact with.
● An internet connection will be required whenever running the Data Collection script,

however the core application should function without a connection.
● The application will send a Slack notification whenever a runtime error occurs.
● An overall accuracy score should be available, this score should be updated whenever

new values are added to the accuracy datastore.

6.2. Usability

As previously mentioned, the application has been developed with ease of use on both the
end user and the developers side. By making the UI simple to understand with tips on what
individual parameters account for provided it aims to allow even the newest of users to
understand the operation of the application. In addition, the process of adding a new
Cryptocurrency to the application is intended to be a simple process, allowing future
developers to improve on the selections available with ease.

● A user should be able to clearly understand the parameters that need to be selected in
order to generate predictions or to test the accuracy of the model.

● The graph(s) generated should be easy to understand with clear labels to differentiate
graphs if multiple have been generated simultaneously.

● If the application has been downloaded with the intention of running it locally, the
process of setting up and beginning to use the application should be clearly laid out.

6.3. Reliability

● The Web Hosted Application should have absolutely minimum downtime.
● In the event of a runtime error the developer should be notified immediately via Slack

notification, assuming there is an internet connection available.
● A user should be able to leave the Data Collection script run without issue outside of

API side errors occuring.

8 | Functional Specification

6.4. Performance

● The generation of a prediction or accuracy test should be completed within a timely
manner as to not lose the attention of the user.

● The GUI must be responsive aside from the aforementioned generations.
● The application should be capable of processing large datasets.

6.5. Supportability

● Additional Cryptocurrencies should be simple to implement.
● Additional Cryptocurrency data sources should be simple to implement.
● The application should be usable with all modern browsers.

9 | Functional Specification

7. Iteration Plan

Throughout this project an agile development approach will be applied, this will naturally
involve several iterations within the development period. At the end of each of these
iterations the work completed during it will be presented along with relevant information
such as the plan for the next iteration and any problems that might have occurred during the
previous iteration.

7.1. Iteration 1

This iteration is planned to run over the course of six weeks, from November 27th 2017 to
January 8th 2018.

7.1.1. Planned Schedule of Work

● Create databases for storing Cryptocurrency’ data.
● Develop the functionality to query the OKCoin API every 20 seconds, parse the

response and store the information.
● Develop a basic version of the Web Application.
● Begin the development of the Algorithm.
● Source a suitable dataset to test the algorithm with while building our own datastore.

7.1.2. Changes during Iteration

● Switched from using MongoDB to using CSV files due to an issue of transferring
data off of the computer designated to collect data.

● Put the development of the Web Application on hold and focused more heavily on the
development of the Algorithm.

10 | Functional Specification

7.2. Iteration 2

This iteration is intended to run for five weeks, between January 15th 2018 to February 19th
2018.

7.2.1. Planned Schedule of Work

● Further develop the Algorithm, begin to use self collected data.
● Develop the graphing method using Plotly.
● Develop a means of checking that the data being used is suitable and not missing any

fields.
● Develop method to determine accuracy of Algorithm.
● Develop a means of notifying the developer in the event of a runtime error.

7.2.2. Changes during Iteration

● Postponed the development of the means of determining accuracy in order to focus on
finishing more core functionality.

11 | Functional Specification

7.3. Iteration 3

This final iteration is intended to run for a final six weeks, between February 26th 2018 until
April 9th 2018.

7.3.1. Planned Schedule of Work

● Develop Web Application and implement existing functionality.
● Develop means of calculating accuracy of algorithm.
● Host the application online.

7.3.2. Changes during Iteration

● Improved error notifications by having it utilise the actual runtime error messages
instead of predefined messages.

● Due to restrictions in place on PythonAnywhere the slack package could not be
installed, thus that functionality was removed on the Web Application.

12 | Functional Specification

