

IT Carlow
Bachelor of Software Development

 Year 4

Portable GUI for ptpython shell
Final Project Report

Student Name: Inga Melkerte
Student ID: C00184799
Supervisor: Paul Barry
Date: 04/04/17

Software Development Final Report

Table Of Contents
Table Of Contents 1

1. Introduction 3

2. Description 4
2.1. Project proposal - Add portable GUI to ptpython shell. 4
2.2. What is Ptpython? 4
2.3. PtpythonGui Description 5
2.4. Technologies Used 5

3. Description of Conformance to Specification and Design 6
3.1. First iteration 6
3.2. Second iteration 7

3.2.1. REPL in command-line 7
3.2.2. REPL redirected to GUI 8
3.2.3. Ptptython REPL into GUI 14

3.3. Third iteration 16

4. Description of Learning 18
4.1. Technical Learning 18

4.1.1. Graphical programing 18
4.1.2. Build your own REPL 18
4.1.3. Understand someone else's code 18
4.1.4. Integrate already existing code 18

4.2. Personal Learning 19
4.2.1.Communications 19
4.2.2. Presentation 19
4.2.3. Work independently 19
4.2.4. Listen to feedback 19
4.2.5. Problem solving 19
4.2.6. Time management 20

5. Review of Project 21
5.1. What went wrong? 21
5.2. What went right? 21
5.3. What is still outstanding? 22
5.4. What would I do differently? 22

1

Software Development Final Report

5.5. Advice for similar projects 22

6. Acknowledgments 23

Appendix A 24
Diary 24

1st Iteration 24
2nd Iteration 26
3rd Iteration 27

References 28

2

Software Development Final Report

1. Introduction
This is final project report for the 4th year software development final project which took
part from 29th of September 2016 until 4th of April 2017. The purpose of this document
is to give an overview of this final project, called “Portable GUI for ptpython shell”.

Project consisted of 3 iterations:

1. 12 weeks
2. 7 weeks
3. 5 weeks

More information in the diary at the end of this report (see Appendix A).

This report is going to cover:

● description of the submitted project,
● description of conformance to specifications and design,
● description of learning, review of the report,
● diary of project,
● acknowledgments.

3

Software Development Final Report

2. Description

2.1. Project proposal - Add portable GUI to ptpython shell.
Newcomers to Python are productive immediately thanks to the existence of the Python
shell (>>>) and its GUI-equivalent, IDLE. Although both are usable tools, newbies
quickly outgrow them (and they are both missing some tools/features which many
programmers expect to be provided). As a result, a number of additional environments
have been created to offer a more feature-full programming experience. Of all of them,
ptpython (see:https://github.com/jonathanslenders/ptpython and
https://pypi.org/project/ptpython/) is notable for provided many powerful features, while
remaining easy-to-use. Unfortunately, ptpython works at the command-line only, and
does not provide an IDLE-like GUI option. The goal of this project is to add a portable
GUI to ptpython.

2.2. What is Ptpython?
Ptpython is developed by Jonathan Slenders, developer from Belgium. “Ptpython is an
advanced Python REPL. It should work on all Python versions from 2.6 up to 3.5 and
work cross platform (Linux, BSD, OS X and Windows).”(GitHub, 2017) Ptpython is built
on top of prompt-toolkit library.

J.Slenders created prompt-toolkit library for building powerful interactive command lines
and terminal applications in Python.

Ptpython provides great features such that:

● Syntax highlighting.
● Multiline editing (the up arrow works).
● Autocompletion.
● Mouse support.
● Support for color schemes.
● Support for bracketed paste .
● Both Vi and Emacs key bindings.
● Support for double width (Chinese) character, etc. (GitHub, 2017)

The code can be downloaded from https://github.com/jonathanslenders/ptpython.

4

https://github.com/jonathanslenders/ptpython
https://cirw.in/blog/bracketed-paste

Software Development Final Report

2.3. PtpythonGui Description
PtpythonGui is being developed to provide Graphical User Interface for ptpython shell.
This tool would be suitable for beginners as a learning tool. It would provide easy and
user friendly interface with simple buttons and menu bar. It would offer ptpython cool
features such as syntax highlighting, autocompletion , history search etc. This project is
not finished because I run out of the time. I believe that I would be able to finish this
project if I had about 4 more weeks.

The reason I choosed this project was to learn python programming language. And I
enjoyed graphical programing in 2nd year when Java programing language using Swing
API. So I wanted to do a graphical user interface in python. Actually it did not sounded
that complicated just to add a layer of front end on an existing project. But it turned out
very challenging, at some parts annoying, complicating, but also exciting and very much
rewarding in fantastic learning experience.

2.4. Technologies Used
Programing language - python.
Researched GUI frameworks in python. For this project tkinter - GUI framework - was
used to design and develop GUI application - PtpythonGui. The reason why Tkinter was
chosen because it comes bundled up with python, it is included in Python standard
library and there is no need to install it.There are lot of documentation and tutorials out
there and Tkinter offers native look and feel on all platforms.
In the research phase - lots of GUI frameworks were researched and tested by creating
simple application in each framework. GUI comparison table was created (it is included
in research document).
Mercurial was used as version source control.
Virtual environment was created - VirutalEnv.

5

Software Development Final Report

3. Description of Conformance to Specification and
Design
The plan was to create PtpythonGui as user friendly, simple and intuitive IDE for
beginners who wish to learn python programing language. It would be similar to IDLE
but would offer some cool features what ptpython has such as syntax highlighting,
autocompletion, search history, etc.

3.1. First iteration
Researched GUI frameworks in python (more in research document and also see
Appendix A). Then researched about ptpython. Because I was new to python, I did not
know python or ptpython. So I got familiar with ptpython and it’s cool features. Then I
wrote design and functionality specification documents for PtpythonGui. (see functional
and design documents). First draft of the GUI was to have two windows - shell prompt
window (start) and code editor window (when clicked on File -> New would open new
window).

6

Software Development Final Report

The GUI would have menu bar with buttons - File, Edit, Run, Settings and Help options.
Right side toolbar would offer the shortcuts to some of options via graphical icons. First I
had to identify entry point in ptpython (which I did -
ptpython/entry_points/run_ptpython.py). And then I was going to bind “F3” function key
to display history but this time not into the command line but into tkinter window. I could
bind the “F3” function key to display new window but could not insert history information
into GUI window. GUI actually changed and evolved as the project progressed.

3.2. Second iteration
I failed to implement simple prompt from prompt-toolkit library into GUI at the end of the
first iteration and with the help of my supervisor Paul Barry I changed strategy and
researched on how does REPL works in python and how to implement my own REPL.
The strategy was changed because Ptpython is better python REPL - basically I need
to know how python REPL works to understand ptpython REPL.

3.2.1. REPL in command-line

A Read–Eval–Print Loop (REPL), also known as an interactive toplevel or language
shell, is a simple, interactive computer programming environment that takes user inputs,
evaluates them, and returns the result to the user (Wikipedia, 2017).

“In some programming languages, eval is a function which evaluates a string as though
it were an expression and returns a result; in others, it executes multiple lines of code
as though they had been included instead of the line including the eval. The input to
eval is not necessarily a string; it may be structured representation of code, such as an
abstract syntax tree (like Lisp forms), or of special type such as code (as in Python).
The analog for a statement is exec, which executes a string (or code in other format) as
if it were a statement; in some languages, such as Python, both are present, while in
other languages only one of either eval or exec is. “(Wikipedia, 2017)

In python 2 raw_input function was for getting input from user. The function was
renamed for Python 3.x from raw_input() to input(). It returns string but lot of things are
happening in the background.

Below is code of a very simple REPL in command-line I build - asks for user input
(READ), if it is single statement it uses eval() function to evaluate statement (EVAL),

7

Software Development Final Report

otherwise it is an expression (multiline statement) and it uses exec() function to execute
this expression (EXEC), it prints the output (PRINT) and then it loops back using while
loop (LOOP).

Output of REPL in command line.

3.2.2. REPL redirected to GUI
First I implemented my own python REPL in command-line and then I created simple
GUI for it.
Steps taken to create my own python REPL in GUI:

➢ Redirected output from the command line to GUI tkinter window textbox (by
overwriting write function instead of displaying output in command-line, it outputs
text into output text area, which I disable to protect it from users changing it and
first I need to change state to normal , so I can display output and then disable it
again)When print function is called, it is redirected to output frame by overwriting
write function.

8

Software Development Final Report

➢ Redirected user entered input - allow user to type input into tkinter entry box

➢ Binded Run button to functions eval() and exec()

➢ Added tkinter textbox and implemented multi-line editing for user input

9

Software Development Final Report

➢ Added 3 frame layers to GUI -
■ Top - frame (integrated notebook with tabs, scroll-bar and line-numbers)
■ Middle - frame (for buttons - run, open, save, clear screen, new tab)
■ Bottom - frame (for redirected output which is disabled, includes error

redirection)

Top frame contains - shell window at the top of the application,which accepts user input

Middle - there are buttons - Run, Open, Save, Clear Screen, New. Run button evaluates
or executes the code

Bottom - at the bottom part there are text area for displaying (redirects) output.

10

Software Development Final Report

High level description of GUI

➢ Error handling - redirected errors into tkinter output

11

Software Development Final Report

For this part I used The tkinter.ttk module which provides access to the Tk themed
widget set. The Ttk Notebook widget was used to implement tab and scrolled bar.

12

Software Development Final Report

Functionality has changed - it is very simplified IDE version, just to give user ability to
run code by pressing button Run, access files from the local computer via Open button
and display them in main text area, Save button gives option to save the file, Clear
Screen button - removes text from textarea fast and easy, button New gives option to
open a new tab.
I changed the idea of using notebook from ttk widgets because I found already made
Notebook in github and I integrated this notebook from github - which has tab and binds
line numbers as enter key is being pressed. It is a nice feature to be add to IDE
because for example IDLE does not have line numbers at the sidebar. But line numbers

13

Software Development Final Report

gives indication for the user when error occurs. When Error occurs it would display at
the bottom frame textarea and tell on which line.

3.2.3. Ptptython REPL into GUI

“It is easier to write an incorrect program than understand a correct one.”
 Alan J. Perlis (Perlis, 1982).

Difficulty to understand and trace the ptpython code and prompt-toolkit. Jonathan
Slenders is fantastic programer I have learned so much by reading his code but he is
also using all the “tricks” that I am not familiar with. Code is complicated. Just to show
that there are lots of code here are Ptpython and prompt-toolkit library files and lines of
code:
Ptpython - has 20 files

-contrib
-__pycahce__
-asyncssh_repl.py
-__init__.py

-entry_points
-__pycahce__
-__init__.py
-run_runptipython.py
-run_ptpython.py

-_pycache_
-completer.py (153)
-custorepl.py (51)
-_eval.py (16)
-eventloop.py (75)
-filters.py (37)
-history_bowser.py (596)
-__init__.py
-ipython.py (302)
-key_bindings.py (235)
-layout.py (573)
-__main__.py (7)
-prompt_style.py (77)
-python_input.py (672)

14

Software Development Final Report

-repl.py (302)
-run_ptpython.py (75)
-style.py (195)
-utils.py (124)
-validator.py (44)

PROMPT-TOOLKIT has 104 files (some of them are listed down below)
-clipboard
-contrib
-eventloop
-filters
-key_binding
-layout

-containers.py (1665)
-controls.py (730)
-dimensions.py (92)
-__init__.py
-lexers.py (320)
-margins.py (253)
-menus.py (496)
-mouse_handlers.py (29)
-processors.py (605)
-prompt.py (111)
-screen.py (151)
-toolbars.py (209)
-utils.py (181)

-__pycache__
-styles

-base.py (86)
-defaults.py (95)
-from_dict.py (148)
-from_pygments (77)
-__init__.py
-utils.py (45)

-terminal
-application.py (192)
-auto_suggest.py (88)

15

Software Development Final Report

-buffer.py (1415)
-buffer_mapping.py (92)
-cache.py (111)
-completion.py (170)
-document.py (1001)
-enums.py (29)
-history.py (120)
-__init__.py (22)
-input.py (135)
-interface.py (1185)
-keys.py (129)
-mouse_events.py (48)
-output.py (192)
-reactive.py (56)
-renderer.py (526)
-search_state.py (36)
-selection.py (47)
-shortcuts.py (717)
-token.py (47)
-utils.py (240)
-validation.py (64)
-win32_types.py (155)

3.3. Third iteration
The third iteration I am understanding more about REPL and how ptpython REPL
works.

○ Traced back code
○ Implemented prompt (>>>)
○ Binded history display on F3 key

16

Software Development Final Report

○ Binded Up-Arrow key to display autocompletion
○ Added menu bar with menu options

i. File - Run, Open, Save, Clear Screen, New
ii. Edit - Cut, Paste
iii. Help - About

17

Software Development Final Report

4. Description of Learning

4.1. Technical Learning

4.1.1. Graphical programing
I researched lots of different GUI frameworks in python. For this project Tkinter was
chosen - because it is inbuilt in python and it provides lots of documentation and
tutorials. Python is a new programing language for me and I had to learn graphical
programming in python. It is actually much easier to write code for GUI in python than in
for example Java. I am delighted I had opportunity to learn this awesome language
which I hope I will use in future.
I got insight in lots of python GUI frameworks and I had an opportunity to create a
simple examples in them and then compare them based on its features.

4.1.2. Build your own REPL
I learned how to build my own python shell and REPL, and then implement it into GUI.
I learned lots from reading code, tracing back code by hand and in debugger.

4.1.3. Understand someone else's code
J.Slenders is fantastic programer and he uses all the “tricks” to write prompt-toolkit and
ptpython. This ability to read somebodies else's code will be advantage when I will start
my “real work” in “real world”.

4.1.4. Integrate already existing code
Another learning outcome - Integrate code - I had to integrate notebook with line
numbers into my code and that is important skill to know. And manipulate it. First I was
going to use tkk widget notebook but it was really much work to implement line numbers
and tabs. So when I found already made notebook I reused it in my code because it
save me time.

18

Software Development Final Report

4.2. Personal Learning

4.2.1.Communications
Communication is very important skill. I learned to communicate ideas effectively with
my supervisor. I had to go the the meetings and admit that I could not achieve what I
had planned but there were always different strategy for a next week.

4.2.2. Presentation
Presentation skills are important key of getting message across by presenting
information clearly and effectively and these skills are important in software
development area as well. I learned that from the work placement experience last year.
So I was delighted to have another chance to improve my presentation skills. I have
learned a lot over 4 years in college. I still have to work on building my confidence. I get
very scared and stressed doing presentations but I think that the more I practice the
“easier” it gets.

4.2.3. Work independently
This is first time I was working on the project for so long period on my own. This was
individual project but I had improve on multitasking skills - final project was ongoing
from september till april but during this time we had other classes, continues
assessments and other project deadlines.

4.2.4. Listen to feedback
I attended all my assign meetings with my supervisor because I feel very responsible
and I valued the time I had with my supervisor as great learning experience: I listened to
his feedback on the work I had done each week, I took his advice for next week.

4.2.5. Problem solving
Problem solving is part of software development process. During the project time so
many problems occurred but most importantly I always tried to solve them by myself
and there were many times I had to ask my supervisor Paul Barry for help. And I
learned so much by solving my problems by myself but it was unbelievable how much I
learned just by watching my supervisor to fix the problems I felt privileged to have such
an amazing supervisor.

19

Software Development Final Report

4.2.6. Time management
I was working really hard this year and I had to manage my time. I used a diary and I
planned only week ahead for my project. It was very overwhelming to think of everything
altogether so I learned to take day by day and take simple steps, to break down work in
little tasks.

20

Software Development Final Report

5. Review of Project

5.1. What went wrong?
During this project there were lots of challenges and things did go wrong. At the
beginning of the project during the first iteration when I researched about GUI
frameworks in python - lots of times there were problems in installing them. I was using
laptop with ubuntu and python is installed in ubuntu but I had python 2.7 version. When
I installed python 3.5 and some tutorials would provide information about tools only for
python 2.7.
Often I felt overwhelmed with the ptpython and prompt-toolkit code. The more I looked,
the more I found that there is more code. I was thinking about it, dreaming about it. It
was great idea to take a step back at the beginning of the second iteration and change
strategy to build REPL because I took a “break” from trying to understand code and
focused on different tasks and when I looked back at the code I could understand it
more and identify points I did not spot before.
J. Slenders provided documentation for prompt-toolkits on March 02, 2017 (I found it a
bit later but it was already middle of second iteration) but that was great help. When I
started to read the documentation I started to make progress but it was a bit too late for
this project.

5.2. What went right?
At the beginning of the project I had no idea how to approach this project, what steps to
take. It was very challenging project for me. The most importantly I learn so much
during the project. I chosed this project to learn python programing language and
especially graphical programming in python. I don’t have much experience in
programing and python was new language to me. But I absolutely love python and I am
delighted I chose this project. 2 iterations went so quick and I was overwhelmed with
complicity of already existing code from ptpython and prompt-toolkits.Third iteration was
much shorted but suddenly something “clicked” and I was able to bind F3 key to display
history from prompt function and bind autocomplete to up-arrow key.
I believe this was very difficult project for me but at the end of the third iteration when I
am able to implement prompt features into my GUI I felt very excited and happy and I
wish I had a little more time to complete my project but it gives me feeling of a little
success.

21

Software Development Final Report

5.3. What is still outstanding?
There are still lots of work outstanding to finish this project “Portable GUI for ptpython
shell”. I have implemented few ptpython features but there are lot more ptpython
features to be implemented. Then I wanted to improve on GUI design, add more menu
bars, buttons and icons. I would have wanted to test it more and get feedback from
users.

5.4. What would I do differently?
I would not spent too much time on researching on GUI frameworks in python. I was
worried about graphical programing but it is much easier and fun to program in python
that in Java. I run in lots of problems when trying out GUI frameworks - some were
difficult to install and compliance with python 2.7 and python 3.5 was annoying.
I would faster move to develop simple REPL in python because it gave me
understanding how REPL works and how ptpython works and then I would look at
prompt-toolkit library.

5.5. Advice for similar projects
This project would be easier done for person who has experience with python language,
understands what is REPL and has some experience in graphical programing.

Spend less time in researching GUI frameworks, choose at the start one GUI tool and
start to build GUI for python REPL and then extend it by adding prompt() function
parameters. And work in agile style with completing simple steps as the time progresses
- write simple set of requirements, it’s functionality, design and the write the code for it .
And keep in mind end user - person who wish to learn python language - and find some
of them to give them to try out the product and get the feedback fast.

22

Software Development Final Report

6. Acknowledgments
I would like to express my special thanks to my supervisor Paul Barry - he is an
amazing programer and a fantastic lecturer. I have learned so much from him during my
project time. I felt privileged to have him as my supervisor.
During the times when I felt overwhelmed and lost with the project (believe me - there
were lots of them) - I could always reach out - email him and get straight away reply
and he was always available during the class or at our meetings to support, to help, to
advise and to point into the right direction.
He is an inspiration and I am extremely thankful to Paul for his patient, encouragement
and advice what he has provided to me through this project.

23

Software Development Final Report

Appendix A

Diary

1st Iteration

W
e
e
k

Date

Task

Action

1. 29/09/16 Topic chosen - Portable GUI for
ptpython shell

2. 5/10/16 Install and “play” with ptpython Installed ptpython

3. 12/10/16 Research and compare GUI tool kits
in python (see Appendix A)

Some errors using ptpyton -
because it was running in
python2.7.Paul helped me to fix it
for me. :)

4. 19/10/16 Design simple GUI application using
each GUI tool and record how easy
was to install them, any difficulties.

1.Tkinter - easy enough to find
inf.and design sample app.
2.Toga - more challenging, very
little inf., when running sample
code, I got errors, trying to fix it and
get it working
3.PyQt-
https://docs.google.com/document/d
/15dY2nUomC_cVhgnzIfBs9BEgnk
44VJBDxMU0T5dYMSc/edit
4.EasyGui - Not-event driven,
invoked by simple function calls,
don’t need to know about tkinter,
frame, widgets, callbacks,
lambda.Uses tkinter back-end
5.PySide -
Paul helped me to fix problems with
downloading GUI frameworks and
indentation problem.

5. 26/10/16 Research further GUI toolkits.
Create simple application in dif.
GUI’s

PyQt - ex8.py - input, label ,button
Kivy - researched more and I found
out that it is more for mobile app
dev.- supports multi-touch

24

https://docs.google.com/document/d/15dY2nUomC_cVhgnzIfBs9BEgnk44VJBDxMU0T5dYMSc/edit
https://docs.google.com/document/d/15dY2nUomC_cVhgnzIfBs9BEgnk44VJBDxMU0T5dYMSc/edit
https://docs.google.com/document/d/15dY2nUomC_cVhgnzIfBs9BEgnk44VJBDxMU0T5dYMSc/edit

Software Development Final Report

EasyGui-

6. 2/11/16 Start to write research manual and
functional specifications.
Research can easygui and tkinter
can be used interchangeably

1. Started to write documents
● Research Manual
● Functional Specification

2. Easygui and tkinter can be used
interchangeably - Easygui ex2.py
3. Looked at ptpython code and
when I type ptpython I can output
window
4. Read about prompt-toolkits
5.Listened to podcast interview with
J.Slenderes about Prompt-toolkit
https://www.podcastinit.com/episod
e-6-jonathan-slenders-talks-about-p
rompt-toolkit/

7. 9/11/16 Look at ptpython code
Chose Tkinter/EasyGUI

Window ptpython

8. 10/11/16 Display window when F3 pressed 1.I can display window when i run
run_ptpython.py
2.updated research document
3.create use cases

9. 17/11/16 Download VirutalEnv for python,
learn how to use it

Virtual environment downloaded,
Still ptpython is trying to reach out of
virtual environment

10. 24/11/16 VirutalEnv problems Accessing everything outside
virtualenv, weird
(Paul helped me to fix it)

11. 1/12/16 Chose Mercurial as source control
tool

Followed tutorials and pushed all
the code to bitbucket using
mercurial

12. 8/12/16 Preparation for presentation Draft created for presentation

13. 13/12/16 1ST PRESENTATION Presentation Done

25

https://docs.google.com/document/d/1A8RokOEjQjhio8gNlWZxh4OubvhGr0TX0UHqSYMWEPY/edit
https://docs.google.com/document/d/1BgXo4GG6YLZD939afzWkvRqD4qOKgqq7krOriXhueAM/edit
https://docs.google.com/document/d/1Gk1vgWyVbRdvqVb76Iw8gRwiGMjGOYvJjKrgScpbKKc/edit

Software Development Final Report

2nd Iteration

W
e
e
k

Date

Task

Action

1. 18/01/17 Task - implement prompt into GUI Not successful, cannot identify the
starting point

2. 25/01/17 Research on REPL for python Paul sent me links, I found some
too - following tutorials to build
simple python REPL, cmd and
YOSH.

3. 1/02/17 Simple REPL in command line build.
Wrap GUI around REPL

Input entered into Tkinter entry
box, (reads, evaluates or executes,
prints, loops back), and output is
displayed in TKinter label

4. 8/02/17 Add text box for multi line editing Textbox allows multiline editing
and exec function does it.

5. 15/02/17 Exceptions handle and display them
into GUI instead of command line

Done

6. 22/02/17 Add notebook into GUI Added notebook with line numbers
and tabs into my GUI

7. 28/02/17 2ND PRESENTATION Done

26

Software Development Final Report

3rd Iteration

W
e
e
k

Date

Task

Action

1. 7/03/17 Back looking at ptpython and
prompt-toolkit library

J.Slenders have put up
prompt-toolkit documentation,
reading that, I have identified
where ptpython evaluates code
but I have to trace back more

2. 14/03/17 Tracing back through ptpython and
prompt-toolkit (buffer, cli, input,
prompt, repl)

Prompt-toolkit library is complex.
Writing final project report

3. 21/03/17 Embedded prompt (>>>)
Implementing history binding to F3
key

Hidden history file is been
created. I can display history in
TKinter Window when F3 is
pressed

4. 28/03/17 Bind Up-Arrow key to autocompletion
Updating Final Document

I have binded Up-Arrow to simple
autocompletion
Final Document done

5. 4/04/17 Demo - Final project Deadline Demo

27

Software Development Final Report

References
1. GitHub. (2017). jonathanslenders (Jonathan Slenders) · GitHub. [ONLINE]

Available at: https://github.com/jonathanslenders. [Accessed 17 March 2017].

2. Perlis, A. J. (September 1982). "Epigrams on programming”

3. Slenders, (2017). prompt-toolkit documentation. [ONLINE] Available at:
https://media.readthedocs.org/pdf/python-prompt-toolkit/latest/python-prompt-tool
kit.pdf [Accessed 30 March 2017].

4. Wikipedia (2017). [ONLINE] Available at:
https://en.wikipedia.org/wiki/GNU_Readline [Accessed 17 February 2017].

28

