
Software Design Document
by

Aaron Ennis
C00190504

Supervisor: Paul Barry

Music Application Project

Date: 18/04/2018

SOFTWARE DESIGN DOCUMENT

Table of contents

Table of contents 1

Introduction 3
Purpose 3
Scope 3
Reference Material 3

Software Design Document (SDD) Template 3
Ukulele Tuner 3

System Overview 4
Description 4

System Architecture 5
Domain Model 5
Class Diagram 6
System Sequence Diagram 7
Use Case Diagrams 9

Play Audio Use Cases 9
Actors 9
Description 9
Main success scenario 9

Read Tablature Use Cases 10
Actors 10
Description 10
Main success scenario 10
Alternative 10

CRUD Record Use Cases 10
Actors 10
Description 10
Main success scenario 11
Alternative 11

CRUD Tablature Use Cases 11
Actors 11
Description 11
Main success scenario 11

Internal Components 12

1

SOFTWARE DESIGN DOCUMENT

delete(audio_file, tab_file) 12
play(file) 12
get_tab(file) 12
record(seconds) 12
create_file(file, notes, normalize_data_length, r, p, stream) 12
check_tab() 13

Data Design 14
Data Description 14
Tablature JSON Files 14
Required Files 14

Component Design 15
Different Components 15

User Interface 15
Music_Utils 15
Folder Architecture 15

Application Folder 15
Recordings 15
Static 15
Tabs 15

User Interface Design 16
Description 16
Screen Description 16

Home / Empty Home Screen 16
Play Screen 17
Pop-Up Messages 17

Screens 18
Empty Home Screen 18
Home Screen 19
Play Screen 21

Screen design 22

2

SOFTWARE DESIGN DOCUMENT

Introduction

Purpose
This software design documents purpose is to clearly show how the application was designed
for both the internal (code) and external (file management + UI) components. It should be
readable for a person with a software background and also for a user without a software
background.

Scope
This project is a music application aimed towards musicians that write and record their own
music. The user will be able to run the application on their computer or laptop. When the
application is run, the user will be able to record a piece of music and save the audio. When
they save the clip of music, the application will then transcribe the piece of music to tablature
form. The projects aim is for guitarists to easily write, record, read, and playback music they
have written.

Reference Material

Software Design Document (SDD) Template
Link to PDF

This PDF document contains the template I used to base this software design document off of.
It was used to create the headings for this document.

Ukulele Tuner
Link to ukulele tuner document

This document is for a ukulele tuner that was created by Mzucker on GitHub. It is a ukulele
tuner written in Python using the Fast Fourier Transformation. This document not only gave me
access to important information that I would need to know to complete this project, it also gave
me a good foundation to begin constructing the internal components of the application.

3

https://sovannarith.files.wordpress.com/2012/07/sdd_template.pdf
https://mzucker.github.io/2016/08/07/ukulele-tuner.html

SOFTWARE DESIGN DOCUMENT

System Overview

Description
This application was created to make life easier for musicians that write and record their own
music. The user will be able to run the application on their computer or laptop. All a user needs
is a working microphone for the laptop or computer, and a guitar to use for the recording.

When the application is run, the user will have the option to record a piece of music. The user
has the option to either record a 5, 10, 15, 20, 25, or 30 second clip. The audio saved by the
user is saved locally and can be accessed at any time as it is stored in a “Recordings” folder in
the applications folder. The audio file is saved in .WAV form so it can be played outside of the
application. When the user records and saves a clip of music, the application will then transcribe
the piece of music to tablature form. This is how the application makes life easier for musicians
as it visualises their music.

The design of the User Interface (UI) should be as simple as possible. This is because the
application was designed to make life easier for a user. The less button clicks a user will have to
do to achieve the task they want to do the better. The UI should be clearly readable and easy to
navigate even for first time users.

The idea for this project was created to stop a common problem musicians have when saving
recordings of their music. The problem is when a recording is saved on a machine and forgotten
about, it can be hard to remember how to play that piece of music. The projects aim is for
guitarists to easily write, record, read, and playback music they have written.

4

SOFTWARE DESIGN DOCUMENT

System Architecture

Domain Model

5

SOFTWARE DESIGN DOCUMENT

Class Diagram

6

SOFTWARE DESIGN DOCUMENT

System Sequence Diagram

The ALT event happens when the user enters a name of a recording that already exists or it
does not meet the naming requirements. The naming requirements would be if the text field is
left empty the user will trigger this event, or if the name entered is 20 characters or more this
event will trigger.

7

SOFTWARE DESIGN DOCUMENT

The LOOP event will continue until the full recording has been completed. After the user selects
the audio they wish to play, the tablature is displayed of that audio. This will continue until the
recording has completed playing. The tablature will remain visible until another recording is
played.

8

SOFTWARE DESIGN DOCUMENT

Use Case Diagrams

Play Audio Use Cases

Actors
User

Description
This Use Case begins when the user wishes to listen to a recording they have created. The user
selects the recording in the “Play” screen and the application plays the audio.

Main success scenario
1. The user goes to the “Play” screen.
2. The user selects a recording from the drop down menu.
3. The application begins to play the selected recording.
4. While the recording is playing, the user can not record, delete, or play another recording until
the current one playing has completed.
5. After the recording has completed playing, the user can record, delete, or play another
recording.

9

SOFTWARE DESIGN DOCUMENT

Read Tablature Use Cases

Actors
User

Description
This Use Case begins when the user wishes to read a tablature for a recording. The user
selects the recording in the “Play”. When the recording begins to play the tablature for the
selected recording is displayed.

Main success scenario
1. The user goes to the “Play” screen.
2. The user selects a recording from the drop down menu.
3. The application begins to play the selected recording.
4. The tablature for that recording is displayed at the top of the application.
5. While the recording is playing, the user can not record, delete, or play another recording until
the current one playing has completed.
6. After the recording has completed playing, the user can record, delete, or play another
recording.
7. The tablature remains displayed until another recording is selected.

Alternative
4.1 There is no existing tab for that recording.
4.2 The application notifies the user that there is no existing tablature for the selected recording.

CRUD Record Use Cases

Actors
User

Description
This Use Case begins when the user wishes to create a new recording. The user selects how
long they want the recording and then clicks the “Record!” button on the “Home” or “Empty
Home” screen. The application begins recording. The user is asked to enter a name for the
recording.

10

SOFTWARE DESIGN DOCUMENT

Main success scenario
1. The user selects how long they want the recording from the drop down menu on the “Home”
or “Empty Home” screen.
2. The user clicks on the “Record!” button.
3. The application begins to record the user for the selected amount of time.
4. While the application is recording, the user can not interact with the User Interface.
5. After the recording has completed, the user is asked to enter a name for the recording.

Alternative
5.1. The name entered by the user either already exists or does not follow the naming
requirements.
5.2 . The application notifies and asks for another name to be entered.

CRUD Tablature Use Cases

Actors
None

Description
This Use Case begins when the user creates a new recording. After the user enters a name, the
application creates a JSON file containing the tablature information.

Main success scenario
1. The user selects how long they want the recording from the drop down menu on the “Home”
or “Empty Home” screen.
2. The user clicks on the “Record!” button.
3. The application begins to record the user for the selected amount of time.
4. While the application is recording, the user can not interact with the User Interface.
5. After the recording has completed, the user is asked to enter a name for the recording.
6. The application creates a new JSON file with the same name as the new recording.
7. The tablature information is saved in this new JSON file.

11

SOFTWARE DESIGN DOCUMENT

Internal Components
The internal components of this application can be found in the file Music_Utils.py which is in
the application folder. It contains multiple functions involved for the transcription of audio and
also to allow a user to record, save, delete and play their audio files. The functions used are:

delete(audio_file, tab_file)
This function deletes a selected audio file. The user selects which audio file they would like to
delete (audio_file). After an audio file is selected for deletion, the JSON file containing the
tablature data for the deleted audio file is also deleted (tab_file).

play(file)
This function allows a user to listen to an audio file they have saved. It plays back audio from a
.WAV file. The user selects the file in their “Recordings” folder and the play(file) function plays it.

get_tab(file)
The get_tab(file) function finds the JSON file containing the tablature data of a desired audio
file. It then pulls out all of the files data. This data is then used to create the tablature displayed
for the user. This function returns the entire tab for each string on a guitar.

record(seconds)
This function allows a user to record a piece of music. Before recording begins, the user selects
how long they would like the recording to be (in seconds). The application begins to record for
the selected amount of time. After it is complete, the user is asked to name the file. After the
naming of the file is complete, the recorded data is sent to the “create_file()” function. While this
function is running (recording), the function is also transcribing the notes being played in real
time. It uses the Fast Fourier Transformation (FFT) to transcribe the audio. The function returns
“notes”, “normalize_data_length”, “r”, “p”, and “stream”.

create_file(file, notes, normalize_data_length, r, p, stream)
This function is used directly after a user creates a new recording with the “record()” function. It
takes in all of the information about the new recording and saves the audio in the “Recordings”
folder, and also saves the tablature JSON file in the “Tabs” folder. The function takes 6
parameters:

1. file = name of the new recording.
2. notes = tablature data (the notes that were playing in the recording).
3. normalize_data_lenght = The length of the “normalize” audio file in the static folder. The

length of this file is needed to remove it from the finished audio file.

12

SOFTWARE DESIGN DOCUMENT

4. r = The audio data to be saved of the new recording.
5. p = This is the information required to create the .WAV file format. It stands for PyAudio,

which is the module used in this application to create .WAV files.
6. stream = This is a requirement for PyAudio to work. It closes the recording stream.

check_tab()
This function is run every time the application is opened. Its purpose is to check if there is any
JSON files in the “Tabs” folder that does not have a corresponding recording in the “Recordings”
folder. If a JSON file is found with no corresponding recording, the JSON file is then deleted.
This is to reduce the memory used in the application if a user deletes the audio files manually
and never deletes the JSON files.

13

SOFTWARE DESIGN DOCUMENT

Data Design

Data Description
This application stores all of it’s data locally on the users machine. The data created by the
application would be the audio files and the document files used to store the information of the
tablature notation for each audio file.

Each of the recordings are saved in a folder named “Recordings” which is located in the folder
the application is saved in. The audio files are saved as .WAV format which means they can be
used outside of the application.

The tablature information is saved in JSON files in a folder named “Tabs” which is also located
in the folder the application is in. A JSON file is created each time a new recording is saved.
The files are named the same as the recording that they hold the tablature data for. When a
recording is deleted in the application, the corresponding JSON is deleted too. If a user deletes
the audio file manually from the “Recordings” folder, the next time the application is started up
the JSON file for the deleted audio file will be deleted.

Tablature JSON Files
The JSON files contain the data for transcribing the audio in the audio files. The data saved is a
list of all of the notes played in the audio (including silences) and the time stamp the note was
played. The JSON files can be read outside of the application if desired. The application uses
the information saved in the JSON file to construct the tablature notation in real time at the
user's request.

Required Files
As all of the data created is stored locally on the users machine, the user must have space free
on their hard drive to create new recordings, otherwise the files will not be able to save. The
application comes with files that are required for it to run. In the “Static” folder, a .WAV file
named “normalize” is saved. The file is used to normalize the audio recorded by the user in the
application. It is a requirement for the application to run. The applications folder also contains
two python files, “main.py”, “music_utils.py”. The main.py file is the main application file that
contains all of the UI and is also the file that runs the application. The music_utils.py file
contains all of the functions and algorithms used in the application. All of these files are required
for the application to work correctly.

14

SOFTWARE DESIGN DOCUMENT

Component Design

Different Components

User Interface
The design of the User Interface (UI) should be as simple as possible. This is because the
application was designed to make life easier for a user. The less button clicks a user will have to
do to achieve the task they want to do the better. The UI should be clearly readable and easy to
navigate even for first time users.

Music_Utils
The Music_Utils file contains all of the functions and algorithms used in recording and
transcribing the audio files.

Folder Architecture
As the application stores all of the files created locally on the users machine, each element of
the application has its own designated folder. The different folders are:

Application Folder
This is the main folder the application is kept. It contains everything the application requires to
run including all of the folders used for storing the files created. This is also where the UI code,
Music_Utils code, the license of the application and a README. The README describes the
application.

Recordings
In this folder, all of the audio recordings created by a user using the application is stored. The
audio files are saved as .WAV format.

Static
In this folder, an audio file named “normalize.wav” is stored. This file is required for the
application as it is used to normalize the sound when recording.

Tabs
In this folder, all of the audio recordings tablature data is stored. They are stored in JSON
format.

15

SOFTWARE DESIGN DOCUMENT

User Interface Design

Description
The design of the User Interface (UI) should be as simple as possible. This is because the
application was designed to make life easier for a user. To follow the goal of simplicity, the UI
was designed with a mentality of the less button clicks a user will have to do to achieve the task
they want to do the better. The UI should be clearly readable and easy to navigate even for first
time users. The selling point of this UI is how the tablature is displayed. It should be easily
readable for the user and represent their piece of music correctly in tablature notation. Each
button is labeled appropriately with exactly what they do to reduce ambiguity. For example, to
record a piece of music the user would click the button labeled “Record”. By labeling everything
in the UI appropriately, it will be easy to navigate.

Screen Description
There are 3 screens in this application. There is the “Home” screen, the “Empty Home” screen,
and the “Play” screen. The “Home” and “Empty Home” screens are where a user can make a
new recording. These are the first screens the user is greeted with upon starting up the
application. The difference between them is that the “Empty Home” screen is displayed when
the user has no existing recordings on their machine. The difference is that it does not let the
user go to the “Play” screen. When a user creates a recording, populating the “Recordings”
folder, the “Home” screen is then displayed to them, allowing them to go to the “Play” screen to
see their recordings.

Home / Empty Home Screen
The “Home” and “Empty Home” screens are the same with the exception of the button allowing
the user go to the “Play” screen. They both have a button labeled “Record!”, which allows the
user to create a new recording. They also have a button labeled “Quit!”, which closes the
application. There is a drop down menu to the left of the “Record!” button. It contains the
numbers 5, 10, 15, 20, 25, and 30. This represents the number of seconds the application
records for when the “Record!” button is clicked.

16

SOFTWARE DESIGN DOCUMENT

Play Screen
Each of the recordings saved on the users local machine will be displayed in a drop down menu
on the “Play” screen. There is a drop down menu for playing the audio file and a separate drop
down menu for deleting an audio file. The user clicks on the recording they wish to either play or
delete from the drop down menus. When a user clicks on a recording to play, the tablature for
that recording will be displayed to the user at the top of the “Play” screen. This is so the user
can listen to the audio and see how it was played. Each time a new recording is added or
deleted, the two drop down menus are updated. Each of the drop down menus are labeled
“Play” and “Delete”.

Pop-Up Messages
When a user wishes to delete a recording, or click on the “Quit” button to close the application,
they are confronted with a pop up message asking them if they are sure they want to go through
with this action. The user is also confronted with a pop up message when they record a new
recording. After the recording has finished, the user is asked to enter in the name of the
recording. If the recording already exists, or the naming requirements have not been met (e.g.
left empty or too long), a new pop up message will appear and the user will be asked to pick a
different name.

17

SOFTWARE DESIGN DOCUMENT

Screens

Empty Home Screen

18

SOFTWARE DESIGN DOCUMENT

Home Screen

19

SOFTWARE DESIGN DOCUMENT

20

SOFTWARE DESIGN DOCUMENT

Play Screen

21

SOFTWARE DESIGN DOCUMENT

Screen design
As simplicity is one of the main goals for this application, the screens are all as basic as can be.
This is to follow the theme of most music applications on the market. Since this application is
similar to a guitar tuner, the design of the primary colour of grey was chosen. This is because a
lot of existing tuners have a simple UI like this with plain colour like grey.

22

SOFTWARE DESIGN DOCUMENT

There is not a lot of buttons on each screen as the design follows the statement “The less
buttons clicks a user will have to do to achieve the task they want to do the better.” Each
button/drop down menu is clearly labeled and the Tablature in the “Play” screen is easily
readable.

23

