EIBC] INSTITUTE of

TECHNOLOGY
CARLOW

Institioid Telcnealaiochta Cheatharlach

Bachelor of Science (Honours)
Software Development

Home Automation System
Design Specification

Course Code: CW238
Student ID: C00212235
Student Name: Xiaohui Ling
Supervisor: Paul Barry

Abstract

This purpose of this document is to provide a detail of the system design of the Home Automation
System. The system architecture and functional design outlined as core part on the system and
describe each function in detail. This document first presents the architecture of Home Automation
System and then given out a structure of whole system functions that presents the key modules.

Contents

1.
2.

T 1A ge e [ot o] oINPT PP PRSPPSO 6
OVEIVIEW ..ttt ettt s bt e e s bt e e s b e e e s e ba e e s sabb e e e s s nbaeessaraees 6
0t O ¥ (oY < TN 6
P S C o -1 I TP PUPTO PP 6
I A = 0 AN ol T =Tt U TSP 6
3.1. 10T Three Layers ArChitECtUIEuvii ittt et e e e e bae e e e e bte e e e eraaeeeeanes 6
3.1.1. OVEIVIBW ..ttt ettt ba e s sabe e s s sra e e s s eba e e s sarae s 6
3.1.2. SONSING LAYE ..eteiiiieeeeittee ettt e e e ettt e e e e e sttt e e e e e e s essaabbeeeeeee s s nnreaeeeeeeeeannnree 7
3.1.3. NETWOTK LAYEF c.eeiiiiiieeeiet ettt e e st e e e s be e e s s nsae e e e sssbeaessnareeessnarenas 12
3.1.4. FAN T o] [or= 1 dTo T o I IF- V7= S USRS 13
K 0 N VoY To] (o -4V AN 1Y ol o 11 (<Y U of < IS 14
N A =] I D=1 F-={ o NS 15
4.1. Modules and FUNCLIONS LAYOUL......uviiiiiiiiiiiiieec ettt see e e snre e e s aree e e s areeas 15
L A U] N 0o T oY e Jo] g 1=) K A U [(U P PPPPTPUPTTPPPPNt 16
4.3, DeVice CONLIOl STrUCTUIE.....ciiuiiiiieiee ettt sttt ettt et e s 17
4.4, Networks COMMUNICAION ..coiuiiiiiiiiiieeitee sttt sttt et e st e st st e b b nas 18
AT, WHFi ettt et b e bt sh ettt e bttt e bt e she e saeeear e e bt e beenes 18
4.4.2. 170 RN 18
4.4.3. L LT o L= PP PP PPPTT 19
1Y T Yo (011 DTy T o PSR 19
LT T 1Y o] o] = g Vol =T @ oY o] U 19
5.1.1. T4 31 SRS P PP PR PRPPRPOP 19
5.1.2. 2= 1o PSP TP PRSP PSPPSR 30
5.1.3. SRUTEET <.ttt ettt st sttt e r e b e s s aeeeaee s 35
5.2, SECUILY IMONITOTING oo e e e e e e e 41
5.2.1. (600 OSSOSO PTUUPUPRRPRRRP 41
5.2.2. DOOK ACCESS...eviiiiiiiiiiiiiiii e 46
5.3, SENSOIS CONTION.ccuiiiiiiiiiiieetieeeet ettt sttt et ettt st e re e s meesme e eeeennees 54
5.3.1. TOMPEIATUNE .. enanes 54

5.3.2. [10T 0] o [Y 2R 60

Table of Figures

= U I R T N - T of Y=ot (U USSPt 7
Figure 2 temperature & humidity SENSONuiii i e e e e e s sreeeessanee 7
T (0 LRI O\ o o] gl D11 VZ= ot RO PPPPPPPPTPPPPPRE 8
FISUIE 4 DC MOTOT DIIVEE 2 ..ttt ettt e ettt e e e e ettt e e e e e s e s s bteeeee e s e s nnsssaaeeeeesesannnnes 8
FIgure 5 Raspherry Pi CAmera...cccueiiiccuiieeieiieeeeeiteeeseitee s s sttt e e s sttt e e s sbee e e s sbteeessbteeessseaeessnseaeessnssenessnes 9
T (0 L S U] N 0= Ta o= - FS PPNt 9
FIUIE 7 REIAY IMOTUIE «.ceeiieeieee ettt et e s e e st e e e s ba e e e eabt e e e ssbaeeesanseeeesnnsneeenns 10
FIBUIE 8 FAN DC IMOTON .ciiiiiiiiiiiiiieieieieeeteeeeeeeeeeeee ettt eeeeeeeeeeeseaeeeneeeaenens 10
= U e I UL (< ol D LG Y T o] o RS 10
FISUIE 10 BUZZEIc.eeiiiiiiieeeeteee ettt ettt et e e e ettt e e e e s s aab et e e e e e e s saanabeaeeeeeeesansesaeaeeeesesannnrnes 11
o= U N I I VT T 2TVt o R 11
= U I I I o] [T T o | TP 11
FIBUIE 13 BUID ettt e e et e e e s et e e e e st taeeesastaeeeessseeeessaeeesanseeeesnnsreeannn 12
= U N I B e o Yol ST 12
FISUIE 15 HOME ROULET ...ttt et e s sttt e e e e s s sab e e e e e e e s s s anasbbeeeeeessssnnnsenes 13
= U I Ko 2= 1 o] o YT o Y o I S 13
Figure 17 MQTT ClIeNtS & BrOKET ...ccccuvviieeeiieee ettt e tee e e et e e e e ta e e e esanr e e e sataeeesansaeeesnanseeanan 14
Figure 18 TOPOIOZY ArCHItECTUIE ...iiiieeiiie et e e e e e e rae e e ssnbreeessanreeaeas 15
Figure 19 Modules & FUNCLIONS LAYOUTuiiiieiiiie ettt ettt e e e e e arae e e s enra e e e eanaeeeeas 16
Figure 20 Ul COMPONENTS SEFUCTUIE ...vviiiiiiiiiiiiieeee ettt e e e s s earee e e e e e s s s sabrreeeeessssssnnnnnns 17
Figure 21 Device Control SCripts STrUCLUIEuviiiiiiee et e e s saare e e 18
FIUIE 22 LIGNT USE CASE c..uuiiieeeeieiie ettt e ettt e e ecttte e e eette e e e etteeeeeataee e e staee e e ssaeeesnssseesssaneesansseeesansreeanan 20
Figure 23 Light Class DIi@gram ..ccc.uieiicciieececiieeeeecittee sttt e st ee s ste e e e sataeeesstaeeesansseeesssaeeesnnsseeesnnnseeannn 21
Figure 24 Light HardWare DESINccccuueieieiiiee ettt e e et ee e etee e e et e e e ettaee e e abaeeeesnssesesnsaeeesanseeeesnanseeanan 22
Figure 25 Light Python Scripts Class DIagramcceccuiieieiiiieecciiee e et e et e e esvre e e s srae e e sesreeeeenseeaeas 23
Figure 26 Turn Light On/Off Sequence DIiagram L.......c.ccoveieereeiieeieeireeereesreesreesteesreeireesreesteesanesaneens 25
Figure 27 Turn Light On/Off SEqUENCE DIAZIram 2.....ccuvieeveeeiieieieeeeree et ecteeeeeeeeeteeesreeeteeeeteeeeveeenns 26
Figure 28 Turn Light On/Off SEquence DIagram 3.......cccccveieerieeriecieereeere et esreesteesreereesreesteesanesaneens 28
Figure 29 Turn Light On/Off SEqUENCE DIaBram 4cc.eceveeireerieeceeere et ecreesteesteeseesreeireesteesteesanesaneens 29
FIBUIE 30 FAN USE CASE ..ceiiiieiieieiieeeieeeeeeeeeeeeeeeeeeeeeseeeeeeeeeseeeseeeseseeeeesese e e e e e s e e e e s e e e e e s e aeaeeeeeeeeeeeeeesaeseeeeeannens 30
Figure 31 Fan Class DI@Zramccccuieiicciiie e eciieeeeeitteeeestit e e etteeeesateeeesataeeesssaeeessssseeesssaeeesansseeessnssenenns 31
Figure 32 Fan HardwWare DESIENuiiiiiieiiiiciiiiieee ettt e e e e e e ettt e e e e e e s esaateeeeeeseessnnsanaeeeeeeeesnnsenns 32
Figure 33 Fan Python Scripts Class DIagramcuueeeiciiieieiiiieeciiree s scireeessire e e ssere e e ssrae e e ssnereeessanneeeeas 33
Figure 34 Turn Fan On/Off SEQUENCE DIABIram........c.cciueevieeiieerieeiieereereesreesteesteesteeeareeseesseesseesanesnneens 34
Figure 35 Adjust Fan Speed SeqUENCE DIagramcocccuuiiiieeeeiccciiireee e s et e e e e e e e e svarrr e e e e e e e esnanenes 35
FIGUIE 36 SHULEEI USE CaSE ..uuiiiiiiiiieieiieieeeciieee e ettt e e sttt e e et e e e s te e e s eataee e s ntaeeeeasseeesssaeeesansseeessnnreeasns 36
Figure 37 ShUutter Class DIiaglram uee e ccieeeeeciieeeeecitee e e ettt e e e ettt e e e e ttaee e e ataeeeesasseeesssaeeesansseeesassenanan 37
Figure 38 Shutter HardwWare DESIN........ceccciieiieiiiieeccieee e et e e ectte e e et e e e e teeeeesasaeeesnbaeeesansseeesnnnseeanan 38
Figure 39 Shutter Pyton Scripts Class DIagramcccccuveeeiciiieeiiiieeeeciieeeecireeessere e e sseee e e ssereeeesnseeeens 39
Figure 40 Move Shutter to Left/Right SEqUENCE DIagram.........cccuveeereeeeieeeeireeeceeeeceeeereeereeeereeeeeree s 40
Figure 41 Pause Shutter Class DIagramc.eeeecciiieiiiiiieeeeiieeeeecireeessiveeeeste e e e ssaereesssasaeeesnnsseeesnssseeanns 41
FIBUIE 42 CCTV USE CaSE..iiiiiiiiiiiiiiiiiiieieieieieieteteteteteteteteteeeteteteseteseteteteteteteteetteteteteteseeeemteeeeseesseeeesseesee 42
Figure 43 CCTV Class Diagram.....cccccuuiiiiieee e ceciiieee e e e e e eeetttee e e e e e s e eesateeeeeaeesesnssraeeeaeeeessnssseneseasessnsnssnns 43
Figure 44 CCTV HardWare DESISNccccueieiiiiieeiciiee e ecitee et ee s ettt e e st eeessaaeesssnaaeeesnsaeeesnnsseeesnnnseeanns 44
Figure 45 CCTV Python Scripts Class DIagramceeeciecccuiiiieee e et ee e e e eccrer e e s e e e e s sveree e e e e e e e esannnes 44

Figure 46 Turn CCTV ONn/Off SEQUENCE DIAZIramcccveieerieereeeeeeeeereeeereeeeteeeeteeeeeteeeeareeereseereeeeereeenns 46

FIBUre 47 DOOI ACCESS USE CASE ..cviiiiiiiiiiiiiiiieiiiiteitieieteteteeeteeeteteteteteteteseseseseesseteseseseseseeeeesesesesesseesseseens 47

Figure 48 Door ACCESS Class DIABIamciiicuieeiiiiieeeeiiieeeeeieeeesetreeessteeesssssaeesssneseeessssaeeessnseeeessssseeesan 48
Figure 49 Door Access HardwWare DESIZNvveecuiiieieiiiieeeiieeeeectteeeesiveeeestaeeeesaeseeesensaeeesansaeeesnanseeanns 49
Figure 50 Door Access Python Scripts Class Diagramccccuveeeiciieeeeiiiee e e et e sere e e e saree e 50
Figure 51 Doorbell SEQUENCE DIABIamcccuiiiiiciiieieiiieeeeiiteeeeerteeessreeeessrreeessarseeessssaeeessssaeeessssseeesas 51
Figure 52 Door LOCK SEQUNCE DIABIramcuuviiiiiiiieeciiiieeeciree e ettt e e eetre e e eeataeesesasaeeesensaeeesnnsaeeesnanseeanas 52
Figure 53 Door Camera SEqUENCE DIiagramuiiieiiiiiiiiiiiieeeee ettt e e e e e eeeree e e e e e s s s srereeeeeessesannnenes 53
Figure 54 Temperature SENSOr USE CaSE.....cccuuuiiiiiiiiieiiiiitee e e e e ettt tee e e e s ssinree e e e e e s s s ssereeeeeeesssannnenes 54
Figure 55 Temperature & Humidity Sensor Class Diagram.........cccceeevciieeeeiiiieeeeiiieeescieeeessvveeeesneeee e 55
Figure 56 Temperature & Humidity Sensor Hardware DeSigNccceevveeriieieiieeniieenieenieeeiee e 56
Figure 57 Temperature & Humidity Sensor Scripts Class Diagram........ccceecvuveeeeiieieeesiiieeescireeeeseneeeens 57
Figure 58 Indoor Temperature & Humidity Sensor Sequence Diagramccceeecveeeviciveeesiiveeeescnneeens 58
Figure 59 Outdoor Temperature & Humidity Sensor Sequence Diagramccccceeevvvveeeriiiveeesncnennns 60

Figure 60 HUMIidity SENSOT USE CASE ...uuvieieiiriieiiiiiieeciiieeeeeitteeeecitteeeeetaeeeesstaeeeesssseeesnsaeeesansseeesnnnseeanan 61

1. Introduction

Home automation as an important application of the loT field has been constantly moving forward.
In life, people can also easily buy smart devices and control them remotely through the App installed
on the mobile phone. Meanwhile, there are many open-source home automation systems
constantly emerging. However, these existing products or open source systems cannot fully meet
the personalized customization needs of different users.

Therefore, | hope to develop a home automation system that is closer to people’s lives. So, this
project carried out preliminary research on home automation, and step by step to realize a system
prototype involving management and control included appliances, security monitoring, sensors and
entertainment.

2. Overview

2.1. Purpose

The purpose of the home automation system design is to break down the whole system into
different modules and functions and describe them in detail conduct how the system should be
implemented by the development stage.

2.2. Goal

The home automation system is designed used to remote control involved fields that included
appliances, sensors, security monitoring, entertainment, through networks. This document describes
the system architecture and system module design details, explains the system components and
working principles.

3. System Architecture

3.1. loT Three Layers Architecture

3.1.1. Overview
The three layers architecture is a classic design in the loT field that simply describes how it works in
its own responsibility of between different components.

Figure 1 IoT architecture

3.1.2. Sensing Layer

3.1.2.1. MEMS

MEMS is an acronym for Micro-electromechanical System that is one of the critical techniques that
was applied in various sensors or smart devices in the |oT field. The advantages are a microchip and
circuit they have. In this project, the temperature and humidity sensor, DC motor driver controller
and cameras are used.

e Temperature & Humidity Sensor

This sensor used to monitor the environment to obtain temperature and humidity in real-time. It is
small size and works with low power.

Figure 2 temperature & humidity sensor

e DC Motor Driver Speed Controller

The DC motor driver speed controller can convert each other between the analog signal and digit
signal so that they can read and write data from the equipment.

Figure 4 DC Motor Driver 2

e RaspberryPi Camera

This is a raspberry Pi camera V2 in the project. It has 8 megapixel native resolution sensor-capable of
3280 x 2464 pixel static images and supports high resolution video.

a.
>
=
—
-~

£
a
w
el

oc

Comera V2.1
Made in PRC

&

Figure 5 Raspberry Pi Camera

e USB Camera

This is a Microsoft Lifecam NX-3000 USB camera used in this project. It could be replaced with any
type of USB camera.

NOISE CRNCELING MIC

Figure 6 USB Camera

3.1.2.2. Electronic Components

Those components have a circuit control system that is controlled through the analog signal. The
way they work based on electromagnetic induction and mechanical principles.

e Relay Module

It can control the home appliances turn on or off through the 5 to 12 voltage that powered by

battery or raspberry Pi. Please read the Wikipedia if you would like to understand how the relay
module works.

)
QF:JQC-3FF
5V A\

b

n

1'EA dnpow Aepy

&

Figure 7 Relay Module

e DC Motor

The DC motors work with 5 to 12 voltage that the maximum of RMP is 15,000. They can be
controlled by the DC motor driver controller which is MEMS.

Figure 8 Fan DC Motor

Figure 9 Shutter DC Motor 2

e Buzzer

As a doorbell that is the low-level signal trigger in door access system.

"~ MH-FMD

r—

, GND{ =
OFx:$
/ . VCC| =3

/ EARTME

-
—

Figure 10 Buzzer

e Push Button

As a doorbell push button in door access system. It is a switch. It is switched on if it is pressed down
then.

Figure 11 Push Button

e Desk Lamp

As a home appliance, it is turned on or off when a high- level signal is received through the relay
module.

Figure 12 Table Light

Figure 13 Bulb

e E-lLock

As a lock in door access system, it is locked or unlocked when a high-level signal is received through
the relay module.

)
/

o
5)

W

-

N\

Mo

y v

Figure 14 E-Lock

3.1.3. Network Layer

3.1.3.1. Wi-Fi
Wi-Fi is a local network communication protocol that takes advantage of the 802.11 standards to
defines service, clients, access points. It supports the maximum number of the client nodes is 32.

The Wi-Fi is used for communication between loT devices in this project.

3.1.3.2. Router

As a gateway that is a networking device, it forwards data packets between networks. It also
provides the Wi-Fi feature which is local networks. In this project, It is necessary to support the
OpenWRT that is an open-source project for an embedded operating system based on Linux used to
route network traffic and We can login into it via SSH to install the software which | want to.

Here | am using a GL.INET GL-MT300N-V2 Mini Travel Router, any router support OpenWRT can
replace it in the project.

Figure 15 Home Router

3.1.4. Application Layer

3.1.4.1. Raspberry Pi 4B
It is an open-source single board hardware platform base on the Linux operating system that easily
extends to develop a device’s control system in the loT field through the GPIO feature is provided.

In this project, the Raspberry Piis a device control centre to manage the loT devices through Python
GPIO feature.

Figure 16 Raspberry Pi 4

3.1.4.2. Mobile Phone

The mobile phone as a terminal control device that remotely manages the loT devices through a
mobile app developed in this project. It could be an Android or Apple iOS operating system within
the mobile phone, however, that just is tested with the Android operating system in this project so
far.

Currently, | am using the brand of mobile phone that is Samsung SM-A320FL base on the Android 7.0
version. It can be replaced with the same Android version of any mobile phone.

3.1.4.3. Mobile App

It is an app was developed by Google Flutter mobile app development framework that used Dart
programming language. Once the app development is complete, it can be easily deployed on both
Android and iOS mobile operating systems. The app mainly provides features through the network
to remotely control the loT devices and obtain environment data both from the sensors.

3.1.4.4. mMQTT

It is a lightweight message queue mid-ware applied in the system. It was developed by IBM that
widely used in the IoT field to solve the problems of real-time communication between devices. It
consists of MQTT Client and Broker. The MQTT client could publish the message to or subscribe to
the message from the broker.

In this project, the flutter app installed in the mobile phone and Raspberry Pi both are MQTT client
and the router is a MQTT broker.

Flutter APP Raspberry Pi \

e publish e publish * enqueue
e subscribe e subscribe § dequeue

Figure 17 MQTT Clients & Broker

3.1.4.5. AWS ActiveMQ

AWS ActiveMQ is a cloud service provided by Amazon corporate company. It bases on the open
source ‘s Apache ActiveMQ used to communicate and exchange information between different
systems. Its function is like MQTT and it also compatible with MQTT as a broker, so it as a service is
used to communicate across the internet between devices in this project.

3.2. Topology Architecture
In the whole project, there are four components are mainly involved that listed below.

1. The smart phone as a control terminal has already installed an app that was developed base
on Flutter mobile framework.

2. The AWS cloud provides the ActiveMQ service as a broker to solve the problems of across
internet real-time communication between mobile phone and Raspberry Pi.

3. The wireless router in the home provides a local network service using Wi-Fi protocol
between mobile phone and Raspberry Pi and it also as a gateway to communicate to the
internet.

4. The Raspberry Pi as a control centre that manages and controls the devices which are home
appliances, monitoring equipment, sensors and etc.

\

" j
AWS Cloud

LJ

N
/ \ *,—,l/“s -

Wireless
Router

Deviecs Deviecs

Deviecs Deviecs

House

Smart
Phone

Figure 18 Topology Architecture

4, System Design

4.1. Modules and Functions Layout
The modules and functions of each module are listed below. It will be described in detail later
in the document.

topicilight/contral
topicifanicontrol
topic/shutter/contral

2 topics ;’I MQTT Broker @ l \ Light
P fopics | AeCke) l

topic/door/cameral/control

topic/cameralcclv

topic/doorlockicontrol
topicfindoor/sensorfread

topicloutdoor/sensoriread

Light Ul
Fan Ul
Shutter UI

CCvT Ul

topiclight/control

\

topicfanicontrol 1 _in\
2 topics & ActiveMQ | Q
- “\—_-/

topic/door/lock/control |
AWS Cloud

Wireless Fan Appliances
Router Shutter

CCTV
= Security —_—
M] —'| Device Control Center |
Temperature -
= Sensor i
Humidity W

O
Raspberry Pls

© Game Center & Entertainment
Word Game |

Smart Phone

devices devices

= Devices Remote Control ;'I Flutter App | |
\

DoorAccess Ul
Temperature Ul

Humidity Ul

Game Ul

devices devices

House

Figure 19 Modules & Functions Layout

4.2. Ul Components Structure
The mobile app Ul components and structure listed below. The widget is a concept in Flutter mobile
framework that is abstracted as an object which is corresponding to a device control panel in this

project.

Home

emote Lc»ntrcnl

1
1

ndoor
Widget Widget

LT
T3
e
HHE

(111
Tk

=
-

Figure 20 Ul Components Structure

4.3. Device Control Structure

The Raspberry Pi as a device control centre has a controller to manage the terminal devices to
communicate to a mobile app through the network. Those were implemented by python scripts.

|
|
1 f

i == Read —
Turn Light On Turn Fan On Move to Left Tum CCTV On Temperature

i d Doorbell On Read Humidity Launch Game
Turn Light Off° /Turn Fan Off Move to Right’ Turn CCTV Off

/
\“
Doorbell Off Direction Control

Pause

— | Place a Bomb

Quit Game
locked

unlocked

Launch Game

Text Input
Turn Camera On
Next Step
Turn Camera Off
Click Confirm

Figure 21 Device Control Scripts Structure

4.4, Networks Communication

4.4.1. Wi-Fi

In this project, it uses the WiFi protocol to provide the local network service between the mobile
phone and Raspberry Pi to exchange information. The Raspberry Pi and mobile phone both have
already had the WiFi feature that means it is easier to implement the project. The disadvantages
that not secure enough and the number of nodes supported is small. However, in this stage of
project that is not too matter.

4.4.2. MQTT

MQTT is a lightweight message transport protocol that provides the publish and subscribe method
to exchange information through wireless between the mobile phone and the devices. It was widely
applied to the loT field that can communicate at low latency and high performance. In the MQTT
protocol, it used the classical C/S architecture, the MQTT Client that either a publisher or subscriber,
even both publisher and subscriber at the same time. The MQTT broker as a server between clients
to transfer the information.

4.4.3. Internet

Due to the system requires that the home appliances should be able to control across the Internet,
So this project will take advantage of AWS cloud to provide a capability which is able to control the
devices between Raspberry Pi and mobile phone across the Internet. The AWS service called
ActiveMQ that is a message queue mid-ware offer the publish and subscribe method to exchange
information between networks. It is also compatible with the MQTT protocol.

5. Modules Design

In this chapter, it describes the functions of each module in detail to explain how the function works
through the design planning.

5.1. Appliances Control
There are 3 types of home appliances are applied in the project, light, fan and shutter that will be
described in the next sections.

5.1.1. Light
This section described how to control the light by the mobile app through both local network and
internet.

5.1.1.1. Use Case
The use case diagram below is clearly shown the process of the light control between the mobile
phone, Raspberry Pi.

N

Maobile Phone

. Light Contral \ :
. Tum Light On By ‘ul'mce

Home Automation System

Turn Ligh On .:
//‘ Turn Light Of .:

Turn Light Off By Voice H—-—-—._.___

Status

Applicances

' Light, Fan, Shutter, etc.)

' Maintenance /

5.1.1.2. Class Diagram

Figure 22 Light Use Case

The light module classes are described using UML class diagram below.

Device Control Center

SpeechRecognition

5.1.1.3. Wiri

State

_LightState

- isLightOn: boolean ’_Elo,ngt’o_/g
+ initState()void 1
+ build():Widget j
- buildBody-Widget ;nn
1,7 -

GoogleSpeechRecognition

+ speechRecognition: SpeechRecognition
+ isAwailable: boolean

+ isListening: boolean

+ isComplete: boolean

+ resultText: String

1

Light\Widget

+ networkType: int

+ LightWidget(networkType: int): LightWidget
+ createState(): State<StatefulWidget=

+ setAvailableState(result:boolean)void

+ setRecognitionStartedState():void

+ setRecognitionResultState(speech:String): void
+ setRecognitionCompleteState()-void

+ activeCallback{result-boolean)-void

+ initSpeechRecognizer()void

'
host: String J
port: int ’

clientldentifier: String
secure: boolean
username: String
password: String

- initial(): void

- connect(): void

- publish(topic:String, message:String)

- subscribe(topic:String):Future<int=

- unsubscribe(topic: String): Future<int=

- disconnect(): void

+ send(commander: String, param: String)
+ receive(command: String)

Figure 23 Light Class Diagram

ng Diagram

MaqttClient

The diagram described how the components connect to each other. There is useful information

provided below.

®-=5v

=33V

33V

12C1 (SDA)
1ze1 (scL)
BCMA
Ground
BCM17
BCM27
BOM22
3.3V

SPID (MOSI)
SPID (MISD)
SPIO (SCLK)
Ground

@ =Ground @ = PWM

=GPIO

=12C

. =SP

@ = UART

UARTO {TXD)
UARTO {RXD)
PWMOD / BCM1B
Ground

BCM23

BCM24

Ground

BCM25

SPI0 (SS0)

SPID (SS1)

Relay Module

BOMS
BCM&

PWM1 ¢ BCM13
BCM19

BCMZ6

Ground

Raspberry Pi 4B

- Charge
Qutlet
-

Figure 24 Light Hardware Design

1. Raspberry Pi and Relay Module

Raspberry Pi Relay Module Wire Colour
5v Pin Positive Pin Red
GND Pin Negative Pin Grey
BCM 21 1/O Pin Green
Relay Module and Light
Relay Module Light Charge of Light Wire Colour
Normal Open Pin Positive of Charge Not Used Red
COM Pin Not Used Positive of Charge Red
5.1.1.4. Device Control Script

There are Python scripts implements to control the Light device through the Raspberry Pi. The
Python script is described using class diagram below.

Controller

1
frie : ~——__maintains
+ client: MgttClient —

+ main()void —a| +LIGHT_RELAY_CHANNEL: int = 21

0.1

+ lightOn{): void
+ lightOff{): void

Figure 25 Light Python Scripts Class Diagram

5.1.1.5. Functional Description
In this section, it will describe that functions design of the light in detail.

5.1.1.5.1. Turn Light On/Off via Wi-Fi

e Description
The householder could click the button on the mobile phone screen to remotely control the light to
turn on or off through local network.

e Key Parameters

MQTT Client Role Action Network | Method Topic Name Message Return Value
Flutter App sender switch button publish topic/light/control on [not applicate]
on
Raspberry Pi receiver [not applicate] o subscribe topic/light/control [not applicate] | on
" Wi-Fi - T -
Flutter App sender switch button publish topic/light/control off not applicate
off
Raspberry Pi receiver [not applicate] subscribe topic/light/control [not applicate] | off

e Sequence Diagram

press switch button
B

returmn commander

String switchState =
getSwitchState()

createMQTTCommandgii ost, port, id)

new MattClient(host, port, i

connect(brokerlP)

d, isSecure)

return mgttClient

connect(brokerlP, id)

return rpiLocalMgttClient

retumn appLocalMttClien

ALT
[switchState _—
commander.send{topic/light/contral’, ‘on)
¥l appLocalMgttClient. publish(’
topic/light/control’, 'on)
o
[switchState

commander.send(topic/light/control’, 'off) |
L =g

appLocalMgttClient. publish
topic/light/control’, 'off)
4

¢

String msg =
rpiLocalMgttClient. subsg
topic/light/control’)

cribe(’

callback(lightOff)

ALT
[msg == "on]
callback(lightOn)
Ii?htOnO
[else]

lightOff)

Figure 26 Turn Light On/Off Sequence Diagram 1

5.1.1.5.2. Turn Light On/Off via Internet

e Description
The householder could click the button on the mobile phone screen to remotely control the light
turn on or off between local network and Internet.

e Key Parameters

MQTT Client Role Action Network Method Topic Name Message Return Value
Flutter App sender switch publish topic/light/control on [not
button on applicate]
Raspberry Pi receiver [not subscribe topic/light/control not applicate on
ap;.ﬂ/cate] Internet - ——
Flutter App sender switch publish topic/light/control off [not
button off applicate]
Raspberry Pi receiver [not subscribe topic/light/control [not applicate] | off
applicate]

e Sequence Diagram

press switch button
|-

createMQ'l'I'Cnmmandﬂ[wst, port, id)

new MattClient(host, port,

return commander

d, isSecure)

return mottClient

connectthost, port, id, u
password, isSecure=try

connect{brokerlP)

id, usemame, password
dsSecure=true)

[sername,

2]
return appCloudMgttClignt

eturn rpiCloudMgttClient

)
String switchState &
getSwitchState()
ALT
[switchState 7= 'on’] _—
commander. send{topic/light/control’, 'on’)
appLocalMgttClient. publish(’
topic/light/contral’, 'o
[switchState F= 'off]

commander.send(topic/light/control’, 'off)

appLocalMgttClient. publ
topic/light/control’, 'o

ish’

String cloudMsg =

tpiCl
topic.

oudiagttClient. sybscribe('
Hight/control’)

String msg =
rpiLocalMgttClient. subjscribe(!
topic/light/control’)

return rpiLocalMgttClient

connect(cloudBrokerlp, port,

rp{LocaltgttClient. publish(
‘topic/light/control’,
clpudisg)

ALT
[msg == 'on’]
callback(lightOn)
Ii?hIOnO
[else]

callback(lightOff)

light Off(

Figure 27 Turn Light On/Off Sequence Diagram 2

5.1.1.5.3. Turn Light On/Off with Voice via Wi-Fi

e Description
The householder could speak to the mobile phone to remotely control the light turn on or off
between local network. The keywords are ‘light on’ or ‘light off’ should be spoke to mobile phone.

e Key Parameters

MQTT Client Role Action Network Method Topic Name Message Return Value
Flutter App sender Said ‘light on’ publish topic/light/control on [not
to phone applicate]
Raspberry Pi receiver [not subscribe topic/light/control [not applicate] | on
applicate] Wi-Fi
Flutter App sender Said ‘light off’ publish topic/light/control off [not
to phone applicate]
Raspberry Pi receiver [not subscribe topic/light/control [not applicate] | off
applicate]

e Sequence Diagram

<4 ==Flutter <<Flutter = ==Flutter Class== =<Home Router== = ty Pis= ==Python Script=>
2 GoogleSpeech o MQATTCommander MQTTClient MQTT Broker TClient Table Light

connect(brokerlP)

retum rpiLocalMgttClient

createMQTTCommander(host, port, id)

new MgttClient(host, port, id|, isSecure)

connect(brokerlP)

>
return appLocaltgttClient|

return mttClient

return comrmander

T e

press Voice button
»
»

ready to record

Bommm e el
speaking
speechRecognition.listen(locple: en_US)
return text
T S
[ar
Itsxy==1ightion] commanden send(topic/light/contral’, 'on 2 |
i appLocalMgttClient. publish(topi
cflight/control’, 'on’)
O oS- ’ - - =
=
Itex ight:of] commande.send(topic/light/contral’, ‘off = |
= appLocalMgttClient. publish(topi
c/light/contral’, 'off)
[elsq]

retum error

String msg =
mpiLocalMattClient. substribe('
topic/light/control’)

ALT

[msg=='onl | . lback(lightOn)

:‘ lightOn()

[else]

callback(||gh10ﬁi

] lightOfiy

Figure 28 Turn Light On/Off Sequence Diagram 3

5.1.1.5.4. Turn Light On/Off with Voice via Internet

e Description
The householder could speak to the mobile phone to remotely control the light turn on or off
through internet. The keywords are ‘light on’ or ‘light off’ should be spoke to mobile phone.

e Key Parameters
MQTT Client Role Action Network Method Topic Name Message Return Value
Flutter App sender Said ‘light on’ publish topic/light/control on [not
Internet .
to phone applicate]

Raspberry Pi receiver [not subscribe topic/light/control [not applicate] | on
applicate]

Flutter App sender Said ‘light off’ publish topic/light/control off [not
to phone applicate]

Raspberry Pi receiver [not subscribe topic/light/control [not applicate] | off
applicate]

e Sequence Diagram

onnect{localBrokerlP)

retum rpiLocalMgttClient
>

connect{cloudBrokerlP,
port, id, usemame,
password, isSecure=trug)

retum rpiCloudMattClient

createMQTTComanderthost, port, id)

v

new MgttClientthost, port, id|, isSecure)

Jport,id, b

return cloudiMgttClient

retun mattClient [~ |

press Voice button

ready to record

S L SRR
speaking
peechR ition | lochle: en_US)
return text
(e I ERTIOREE e
e P
(texy=="Tightian] commander send(topic/light/control’, 'on ol
>
appLocalMgttClient. publish(topi
c/light/contral’, 'on’)
»
[text) == Tlight off]

commandef. send(topic/light/control’, 'off)

g appLocalMgttClient. publish(topi
cllight/control’, 'off)

[elsd]

return error

J

String cloudMsg =
rpiCloudMgttClient. subpcribe(’

topic/light/control)
rpiljocalMgttClient. publish(topic
light/control’, cloudMsg)

String msgy =
rpiLocaliMgttClient. subseribe(!
topic/light/control’)

AT
[msg == on] callback(lightOn)
>
lightOn()
[else]

callback(lightOff L
>

:| lightOff)

Figure 29 Turn Light On/Off Sequence Diagram 4

5.1.2. Fan
The Fan module that manages their status is to turn on, turn off and adjust running speed.

5.1.2.1. Use Case
The use case diagram below is clearly shown the process of the Fan control between the Mobile app,

Raspberry Pi.

Home Automation System

Turn Fan On K,
: \

/ \
/ ™
N
/ N
/ o
Ve \\
ﬁ _—> TumFanOff ~_ .
. "\ ——— | FanControl — K"M ™
Mabile Phone
/ ' Device Control Center

_ Status /

Applicances Maintenance

(Light, Fan, Shutter, etc.)

Figure 30 Fan Use Case

5.1.2.2. Class Diagram
The Fan module classes are described using UML class diagram below.

Switch

extend

_FanState

-isRunning: boolean belong to 1
- speed: int)
1 + networkType: int

+ build(): Widget) . .
- buildBody(): Widget + FanWidget(networkType:int):FanWidget

+ createState():State<Stateful\Widget=

host: String
port: int s
clientldentifier: String -7
secure: boolean
username: String
password: String

- initial(): void

- connect(): void

- publish(topic:String, message:String)

- subscribe(topic:String):Future<int=

- unsubscribe(topic: String): Future<int=

- disconnect(): void

+ send(commander: String, param: String)
+ receive(command: String)

That is a slider to
adjust speed of the fan

Figure 31 Fan Class Diagram

5.1.2.3. Wiring Diagram
The diagram described how the components connect to each other. There is useful information
provided below.

@® -5v @ -Ground @ =PWM @ =s*
@ =33v =GPIO =12C @ =UART
3.3v 2 sv
12C1 (SDA)) sv
12C1 (SCL) Ground
BCM4 - UARTO (TXD)
Ground UARTO (RXD)
BCM17 PWMOD / BCM18
BCM27 Ground
BCM22 BCM23
33v 3 BCM24
SPIO (MOS1) Ground
SPIO (MISO) BCM25 '
SPIO (SCLK) SPIO (SS0) r
Ground SPIO0 (SS1) m o
Bcms RS S Ground °
B8CMe ETRE S 5CM12
PWM1 / BCM13 Ground EVHEARET.

BCM19
BCM26

BCM16
BCM20
BCM21

Ground

Raspberry Pi 4

Figure 32 Fan Hardware Design

1. Raspberry Pi and Motor Driver Module

A Fan with Motor

Raspberry Pi Motor Driver Module Wire Colour
5v Pin Positive Pin Red

GND Pin Negative Pin Grey

BCM 12 In2 Pin Green

2. Motor Driver Module and Fan Motor

Motor Driver Module Fan Motor Wire Colour
First Pin in Slot Positive Red
Fourth Pin Slot Negative Grey

5.1.2.4. Device Control Script

There are Python scripts implements to control the Light device through the Raspberry Pi. The
Python script is described using class diagram below.

Contraller

+ client: MgttClient ™ Fan
. . ~.maintains _
+ main()-void . + FAN_PWM_CHAMMEL: int =12
~g 1|t speed: int
“ya *isRunning: boolean

+ start(): void

+ fanCn(): void

+ fanOff): void

+ fanSpeed(speed:int)vaid

Figure 33 Fan Python Scripts Class Diagram

5.1.2.5. Functional Description
In this section, it will describe that functions design of the Fan in detail.

5.1.2.5.1. Turn Fan On/Off

e Description
The householder could click the button on the mobile phone screen to remotely control the fan to
turn on or off through local network.

e Key Parameters

MQTT Client Role Action Network | Method Topic Name Message Return Value
Flutter App sender switch button publish topic/fan/control on [not applicate]
on
Raspberry Pi receiver [not applicate] - subscribe topic/fan/control [not applicate] | on
" Wi-Fi - - -
Flutter App sender switch button publish topic/fan/control off not applicate
off
Raspberry Pi receiver [not applicate] subscribe topic/fan/control [not applicate] | off

e Sequence Diagram

<=Home Router==

MQTTCommanc MQTT Broker

connect(brokerlP)

retumn rpiLocalMgttClient

createMQTTCommander(host, port |id)

=

ew MattClientthost, port, id| isSecure)

connect(brokerlP)

return appLocalMttClient

returmn mattClient

return cormmander

press the
switch button

onPress()

ALT @
[bigtenSigis == "on]

commander.send(topicfan/control’, ‘'on’)

appLocalMattClient. publish(‘topi
c/fanfcontrol’, 'on’)

>

[buttonState == 'off]

commander.send(topic/fan/control’, ‘off)

appLocaltgttClient. publish(topi
c/fan/control’, 'off)

»
>

String msg =
rpiLocalMgttClient. subsgribe('
topic/fan/contral)

[AT
['msg == ‘on] callback(fanOn)
fanOn()
[msgy == "off |

callback{ fanOff)
=

:l fanOff()

Figure 34 Turn Fan On/Off Sequence Diagram

5.1.2.5.2. Adjust Fan Speed

e Description
The householder could slide the progressing bar on the mobile phone screen to remotely control the
fan running speed through local network.

e Key Parameters
[MaTT Client | Role | Action | Network | Method | Topic Name | Message Return Value |

Flutter App sender Slide the publish topic/fan/control Numeric value | [not applicate]
progressing Wi-Fi
bar

Raspberry Pi receiver [not applicate] subscribe topic/fan/control [not applicate] | Numeric value

Sequence Diagram

slide the
progressing bar

5.1.3. Shutter

C

T

teMQTTCommander(host, port[id)
R

retum commander

int value =
getProgressBarvalue()

commander.send(topic/

ne

MgttClient{host, port, id| isSecure)

return mgttClient

an/control’, value)

connect(brokerlP)

==Home Routel

MQTT

connect(brokerlP)

retumn rpiLocalMattClient

c/fanfcontrol’, value)

appLocalMgttClient. publis

return appLocalMgttClient

»
>

(topi

>

String msg =

topic/fanfcontrol’)

| ALT
[msg is a numeric

|[else]

rpiLocalMgttClient. subseribe(’

callback(fanSpeed

callback(fanOff)
T

Figure 35 Adjust Fan Speed Sequence Diagram

The Shutter module that manages their directions to move and pause itself.

fanSpeed(msg)

:| fanOff()

5.1.3.1. Use Case

The use case diagram below is clearly shown the process of the Shutter control between the Mobile

phone, Raspberry Pi.

N
Y

Mobile Phone

Home Automation System

A Move to Left \\
/ \
/ AN
/ AN
™

/ } AN
> MovetoRight ~_ S
Shutter Control — “‘“-\\ ~
T
e “'H-\._\
\\\ I
.
\\

.
* Pause the Shutter ——————

e
7

Status v

Applicances

(Light, Fan, Shutter, etc.)

Maintenance

5.1.3.2. Class Diagram

Figure 36 Shutter Use Case

The Shuter module classes are described using UML class diagram below.

Device Control Center

State lconButton IconButton

There are 3 buttons
respectively left,

. extend
right, pause.

_ShutterState

- shutterAction: String .

+ build():Widget 1
- buildBody:Widget belong to
1
= 1 + networkTypeint
1 TN flﬂf + ShutterWidget(networkType:int): ShutterWidget
Tl + createState(): State<Stateful\Widget=
Tl 1
host: String ="
port: int .-
clientldentifier: String =" has
secure: boolean .

username: String
password: String

- initial(): void

- connect(): void

- publish{topic:String, message:String)

- subscribe(topic: String):Future<int=

- unsubscribe(topic: String): Future<int=

- disconnect(): void

+ send{commander: String, param: String)
+ receive(command: String)

Figure 37 Shutter Class Diagram

5.1.3.3. Wiring Diagram
The diagram described how the components connect to each other. There is useful information
provided below.

®-s5v @ =Ground @ =PWM @ =SPI

@ =uUART

=3.3v = GPIO =I12C

3.3V
12C1 (SDA)Y
12e1 (SCL)
BCMA
Ground
BCM17
BCM27 Ground
BCM22 BCM23
3.3V 7 1 BCM24

SPI0 (MOSI)
SPI0 (MISO)
SPI0 (SCLK)
Ground

Ground
UARTO (TXD)
UARTO (RXD)

Ground
BCM25
SPI0 (SS0)
SPID (SS1)

BCMS

BCMB&

PWM1 / BCM13
BCM19

BCM26

Ground

Ground
BCM12
Ground
BCM16
BCM20
BCM21

PWMOD / BCMIEB

Raspberry Pi 4

BCM4: Direction Channel
BCM13: PWM Channel

Figure 38 Shutter Hardware Design

1. Raspberry Pi and Motor Driver Module

Motor Driver Module

Shutter Motor

Raspberry Pi Motor Driver Module | Wire Colour Description

5v Pin Positive Pin Red

GND Pin Negative Pin Grey

BCM 4 DIR Pin Blue Control motor direction
BCM 13 PWM Pin Green Control motor speed
GND Pin GND Pin Grey

2. Motor Driver Module and Fan Motor

Motor Driver Module

Shutter Motor

Wire Colour

A Pin Positive Red
B Pin Negative Grey
5.1.3.4. Device Control Script

There are Python scripts implements to control the Shutter device through the Raspberry Pi. The
Python script is described using class diagram below.

Controller

+ client: MgttClient

+ main()-void

5.1.3.5.

Functional Description

“~._maintains
m
.
-,

e
e,

0.1

Shutter

+ SHUTTER_DIR_CHAMMEL: int = 4
+ SHUTTER_PWM_CHANMNEL: int = 13

+ speed: int

+ speedUpldirection: String): void

+ shutterMove(direction: String): void
+ shutterStop(): void

Figure 39 Shutter Python Scripts Class Diagram

In this section, it will describe that functions design of the Shutter in detail.

51351

Move to Left/Right

e Description
The householder could click the left or right arrow button on the mobile phone screen to remotely
control the Shutter moving to left or right through local network.

e Key Parameters

MQTT Client Role Action Network | Method Topic Name Message Return Value

Flutter App sender click the left publish topic/shutter/control | left [not applicate]
arrow button

Raspberry Pi receiver [not subscribe topic/shutter/control | [not left
applicate] Wi-Fi applicate]

Flutter App sender click the right publish topic/shutter/control | right not applicate
arrow button

Raspberry Pi receiver [not subscribe topic/shutter/control | [not right
applicate] applicate]

e Sequence Diagram

5.1.3.5.2.

«=Flutter Class==

Shutter\idge

cre:

press the
direction button

teMQTTCommander(host, port |

retumn commander

button.onPress()

new MgttClient(host, port, id

connect(brokerlP)

| isSecure)

connect(brokerlP)

retum rpiLocalMgttClient

return mattClient

»
P

retumn appLocalMgttClient

ALT

[outton.

direction == 'left]

commander.send(topic.

shutter/control’, 'left’)

appLocalMgttClient. publis|
c/shutter/control’, 'left) =

(‘topi

>

[button.

irection == right']

commander.send(topic/

shutter/control’, 'right’)

L

appLocaltgttClient. publis|
c/shutter/control’, right’) s

(‘topi

>

e Description
The householder could click pause button on the mobile phone screen to remotely control the
Shutter to stop the shutter through local network.

e Key Parameters

String msg =
rpiLocalMgttClient. subs
topic/shutter/control’)

ribe('

Figure 40 Move Shutter to Left/Right Sequence Diagram

Pause the Shutter

callback(shutterMovel)
—_—

==Python Script==

Shutter

shuttertove(
msg)

MQTT Client Role Action Network | Method Topic Name Message Return Value

Flutter App sender click the publish topic/shutter/control | stop [not applicate]
pause button WicFi

Raspberry Pi receiver [not subscribe topic/shutter/control | [not stop
applicate] applicate]

e Sequence Diagram

<=Flutter Class=> <<Flutter Class== <=Home Routers> < berry Pi== <<Python Scripts=

MATTCommander MQTTClient MQTT Broker ent Shutter

connect{brokerlP)

return rpiLocaltgttClient
createMQTTCommander(host, port |id) >

new MattClient(host, port, id|, isSecure)

connect(brokerlP)

return appLocalMgttClient

return mgttClient

return commander

press the pause
button

N

button.onPress()

commander. send(topic/shutter/control’, ‘pause’) |

appLocalMgttClient. publish(topi
cfshutter/contral’, 'pausel
Ll

String msg =
rpiLocaliMgttClient. subscribe(!
topic/shutter/control)

ALT
[msg == 'stop] | callback(shutterStop)
_—>

shutterStop()

[else]
callback(shuttertove

shutteriove(
msg)

Figure 41 Pause Shutter Class Diagram

5.2. Security Monitoring
There are two parts in this module, one part is a CCTV to capture the live view and transfer to mobile
phone. another one is a Door Access to manage the doorbell, camera, and lock that will be described

in the next sections.

5.2.1. CCTV
The CCTV module that manages their status is to turn on and turn off.

52.1.1. Use Case
The use case diagram below is clearly shown the process of the CCTV control between the mobile
phone, Raspberry Pi.

Home Automation System

Turn Camera On \
™

o~ Iii CCTV Control M .

Mobile Phone

/" Device Control Center

Status /

Applicances Maintenance

(CCTV, Door Access, etc.)

Figure 42 CCTV Use Case

5.2.1.2. Class Diagram
The CCTV module classes are described using UML class diagram below.

.] That is CCTV camera
MjpegView I [ic vvindow

+ url: String

+ fps: int

=7

_MjpegViewState

- mjpeg: Image
- client: HttpClient

+ initState()-void

+ deactivate()-void

+ build():Widget

- buildimageStream()-void

MagttCommander

host: String

port: int
clientldentifier: String
secure: boolean
usermame: String
password: String

- initial(): void

- connect(): void

- publish{topic:String, message:String)

- subscribe(topic:String):Future<int:

- unsubscribe(topic: String): Future<int=

- disconnect(): void

+ send(commander: String, param: String)
+ receive(command: String)

5.2.1.3. Wiring Diagram

_CCTVState

- isLoading: boolean

+ build():Widget 1
- buildBody:Widget
- asyncUpdateVideoStatewg%%

11 1 =~

Figure 43 CCTV Class Diagram

+ createState(): State<Stateful\Widget=

belong to 1

lconButton

Thatis a
video button

The diagram described how the components connect to each other. There is useful information

provided below.

®-5v @ -Ground @ =PWM @ =5PI

=3.3v = GPIO =i2C @ =UART

USB Camera

12C1 (SDA) 3 " 5V
12C1 (SCL) Ground
BCM4 UARTOD (TXD)
Ground UARTO (RXD)
BCM17 PWMD / BCM18
BCM27 Ground
BCMm22 BCM23
3.3V L BCM24
Ground
BCM25
SPID (SS0)
SPI0 (557)

SPI0 (MOSI)
SPID (MISO)
SPI0 (SCLK)

Ground

Ground
BCMI2
Ground
BCM16
BCM20
BCM21

BCMS

BCM&

PWM1 / BCM13
BCM19

BCM26

Ground

Figure 44 CCTV Hardware Design

1. Raspberry Pi and USB Camera
Raspberry Pi USB Camera Wire Colour
USB Interface USB Cable Green

5.2.1.4. Device Control Script
There are Python scripts implements to control the CCTV camera through the Raspberry Pi. The

Python script is described using class diagram below.

Controller ’
+ client: MgttClient maintains
+ main()void
0.1 .
+ cotvOn()void
+ cotvOff)void
Figure 45 CCTV Python Scripts Class Diagram
5.2.1.5. Functional Description

In this section, it will describe that functions design of the CCTV in detail.

5.2.1.5.1.

e Description
The householder could click the button on the mobile phone screen to remotely control the CCTV

camera to turn on or off through local network.

e Key Parameters

Turn CCTV On/Off

MQTT Client Role Action Network | Method Topic Name Message Return Value

Flutter App sender switch button publish topic/cctv/control on [not applicate]
on

Raspberry Pi receiver [not applicate] WiEi subscribe topic/cctv/control [not applicate] | on

Flutter App sender switch button publish topic/fan/control off not applicate
off

Raspberry Pi receiver [not applicate] subscribe topic/cctv/control [not applicate] | off

e Sequence Diagram

connect{brokerlP)

return rpiLocalMgttClient

createMQTTCommander(host, port, id)

new MattClient(host, port, id| isSecure)

connect{brokerlP)

retum appLocalMgttClient

return mattClient

retumn commander

press the ccty
button

button.onPress{)

ALT

-

[buttan.status == 'on]

ler. send(topic/cctv/control', 'on’) a

appLocalMgttClient. publish('topi

cicctv/control', 'on) &
>

[button. status == 'off]

commander.send(topic/cctv/control’, 'off) =~

appLocalMgttClient. publish(topi

c/cctv/control', 'off) iy
>

String msg =
rpiLocalMgttClient. subseribe(’
topic/cctv/control’)

AT/
[msg == ‘on’] callback(cctvOn i
cetvOn()

new MipegView(ur!

[msg == 'off]

callback(cctvOffi

buildimageStream() cetvOff()

retum imageStream

Figure 46 Turn CCTV On/Off Sequence Diagram

5.2.2. Door Access
The Door Access module that manages the door status when a visitor stands at the door.

5.2.2.1. Use Case
The use case diagram below is clearly shown the process of the Door Access control between the
mobile phone, Raspberry Pi.

A—
‘w

The Visitor

A—
s

Mabile Phone

Home Automation System

./..

/ Press Button

 Doorbell Button L N
Contral 7 \
- \ Release Button |

‘.

— Doorbell Contral |

\"._ Doorbell Control | Tum Doarbell On
. - . e

.

\.Tum Doorbell Oﬂ:\

-

| Camera Control ._k_._-—-—-—"‘__\Tum Camera On \

',._- -, “ A
— Door Access Control :/)

| Turn Camera Off |

— .,

\ Locker Control... / H_'_'_'—__‘—* Unlock the Door /

e g
' lock the Door
Status

Applicances

(Camera, Locker, etc.)

' Maintenance /

5.2.2.2.

Class Diagram

Figure 47 Door Access Use Case

The CCTV module classes are described using UML class diagram below.

Device Control Center

MjpegView That is camera live window
+ url: String extend 0.1
+ fps: int 0.1
+ createState(): State<Stateful\Widget '\\\ 7
‘ 1 1 \\ 0"1

A

\ extend

‘\ State

N 0.1
_MjpegViewState N
* DoorAccess\Widget
- mjpeg: Image D
- client: HttpClient \\has 1
A
+ initState():void Y + createState(): State<Stateful\Widget=
+ deactivate()-void Yo
+ build()-Widget ' belong to
- buildimageStream():void "
- isVideolLoading: boolean 1
- isLocked: boolean
MgttCommander + initState():void 1
s + dispose()-void " ~~__has
e Filny + build()-Widget S
pqr‘t. int o - buildBody{) Widget e, lconButton
T - lockButtonWidget()- Widget 1
SEcure. ?0 ean - updateVideoState()-void _
username: String _
password: String 7
_-~has
ri

- initial(): void 1
- connect(): void
- publish({topic:String, message:String)
- subscribe(topic:String):Future<int= y
- unsubscribe(topic: String) Future<int= L I MaqttClient
- disconnect(): void has

+ send(commander: String, param: String)
+ receive(command: String, Function callback).void

5.2.2.3. Wiring Diagram

Figure 48 Door Access Class Diagram

The diagram described how the components connect to each other. There is useful information

provided below.

A

E-Locker

@® -=sv @ -Ground @ =PWM @ =SP!
@ =33v =GPIO =12C @ =UART
33v sv
12C1 (SDA) 5v
12C1 (SCL) Ground
BCM4 UARTO (TXD)
Ground UARTO (RXD)
BCM17 PWMO / BCM18
BCM27 Ground
BCM22 BCM23
33v BCM24
SPI0 (MOSIH) Ground
SPIO (MISO) BCM25
SPI0 (SCLK) SPI0 (SS0)
Ground SPI0 (SS1)
BCMS Ground
BCM6 BCM12
PWM1 / BCM13 Ground
BCM19 BCM16
BCM26 BCM20
Ground BCM21
BCMCode L
Door Camera
Door Button
Figure 49 Door Access Hardware Design
1. Raspberry Pi and Buzzer (Doorbell)
Raspberry Pi Buzzer (Doorbell) Wire Colour
3.3v Pin VCC Pin Red
GND Pin GND Pin Grey
BCM 5 1/0 Pin Green
2. Raspberry Pi and Doorbell Button
Raspberry Pi Doorbell Button | Wire Colour
3.3v Pin VCC Pin Red
GND Pin GND Pin Grey
BCM 15 (RXD) 1/0 Pin Green

3. Raspberry Piand Relay Module

/

Relay Module

Raspberry Pi Relay Module Wire Colour
Sv Pin Positive Pin Red

GND Pin Negative Pin Grey

BCM 23 1/0 Pin Green

4. Relay Module, Lock and Battery

Relay Module Lock Battery Wire Colour
Normal Open Pin Positive of Charge Not Used Red
COM Pin Not Used Positive Red

5. Raspberry Pi and Raspberry Camera

Raspberry Pi Raspberry Camera | Wire
Colour
Raspberry Camera Interface | Camera Cable Green

5.2.2.4. Device Control Script
There are Python scripts implements to control the Door Access through the Raspberry Pi. The

Python script is described using class diagram below.
1

+ client: MgttClient — + DOORBELL_CHANMEL: int = 5
T +DOORBUTTONM_CHANMEL: int = 15

0.1

- - maintains
+ main()void

+ bellOn(): void
+ bellOff{): void

- - ’;’ . .

mamtams// e o + bellCallback(callback)void

- . maintains
p ~

01 .

H“\-\
~—
0.1 ™
DoorCamera
DoorLocker

N,

+ cameraOn()-void + LOCKER_CHANNEL; int = 23

+ cameraOff{):void

+ lock{)veid
+ unLock{)void

Figure 50 Door Access Python Scripts Class Diagram

5.2.2.5. Functional Description
In this section, it will describe that functions design of the Door Access in detail.

5.2.2.5.1. Doorbell On/Off

e Description
The visitor could press the doorbell button on the door to enable the doorbell beep that can notify
the householder to hear it.

e Key Parameters

Device Role Action Method

Doorbell sender Press the

Button doorbell button

Raspberry Pi receiver Notify the bellOn()
doorbell beep

Doorbell sender Release the

Button doorbell button

Raspberry Pi receiver Notify the bellOff{()
doorbell quiet

e Sequence Diagram

Doorbell Button Doorbell

Press the button

buttonState =
GRIC.input(DOORBUTTON_CHAMNEL)

[

ALT|
When button . B
— [outtonState == "False] bellon()
»
GPID.ouput(DOOBELL_CHANNEL,
GPID.LOW)
V?;h?;et;ust;%n —{fbuttonState == True’]
bellOff()
»

GPID.ouput(DOOBELL_CHANNEL,
GPID.HIGH)

Figure 51 Doorbell Sequence Diagram

5.2.2.5.2. E-Lock Locked/Unlocked

e Description
When the householder hears the doorbell is beeping, the householder could click the lock button on

the mobile phone screen to remotely control the door lock to unlock and lock through the local
network.

e Key Parameters

MQTT Client | Role Action Network | Method Topic Name Message Return Value
Flutter App sender Click lock publish topic/door/lock/control | on [not applicate]
button on
Raspberry Pi | receiver [not subscribe topic/door/lock/control | [not on
applicate] WicFi applicate]
Flutter App sender Click lock publish topic/door/lock/control | off not applicate
button off
Raspberry Pi | receiver [not subscribe topic/door/lock/control | [not off
applicate] applicate]

5.2.2.5.3.

Sequence Diagram

press the locker
button

reateMQTTCommander(hq

ne

st, port, id)

MgttClient{host, port, id|

connect{brokerlP)

| isSecure)

return commander

button.onPress()

connect(brokerlP)

return rpiLocaliMgttClient

return mgttClient

return appLocalMgttClient

ALT

|button. status == 'lock’]

commander send(topic/

doorflock/control’, lock

appLocalMgttClient. publish(topi
c/doorflockfcontrol’, 'lock_’l
»
[button. status == ‘unlock’|
commander.send(topic/door/lock/control’, ‘unlock)
L
appLocalMgttClient. publish(topi

c/doorflockfcontrol’, ‘unlock
.

)

>

Description

String msg =
rpiLocaligttClient. subst
topic/door/lock/control)

cribe(’

AT /
[msg == 'lock’]

callback(lock)

:l lock()

msg == ‘unlock’

callback(unlock :

:l unlock()

Figure 52 Door Lock Sequence Diagram

Turn Door Camera On/Off

The householder enters the door access control panel screen on the mobile phone that could
remotely control the door camera to turn on or off through the local network.

e Key Parameters

MQTT Client Role Action Network Method Topic Name Message Return Value
Flutter App sender Enter the door publish topic/door/camer | on [not
access control a/control applicate]
panel
Raspberry Pi receiver [not applicate] subscribe | topic/door/camer | [not applicate] on
WicFi a/control
Flutter App sender Exit the door publish topic/door/camer | off not applicate
access control a/control
panel
Raspberry Pi receiver [not applicate] subscribe | topic/door/camer | [not applicate] off
a/control

e Sequence Diagram

Enter the
DoorAccess

Exit the
DoorAccess

Control Screen »

Control Screen »

==Flutter

Clas
Vi

MipegVie!

createMQTTCommg

ander(host, port, id)

return

< ______________

C}

ne

ommander

mmander. send(topic/doo)

MuttClient(host, port, id| isSecure)

connect(brokerlP)

connect(brokerlP)

return mattClient

p/camera/control’, 'on’)

new MipegView(ur!

return imageStream

buildimageStream

c}

pramander.send(topic/doo)

return appLocaltgttClient

appLocalMgttClient. publis|
c/door/camera‘control’, ‘o£

»
»

(topi

y/camera/control’, 'off)

appLocalMgttClient. publis
c/door/camera‘control’, ‘Dif“

»>

return rpiLocalMgttClient|

String msg =
rpiLocaliMgttClient. subs
topic/door/camera‘contrpl)

ribe(’

==Python Script==
Door Camera

callback(cameraOff)

ALT
[msg == "on] callback(cameraOn)
cameraOn()
[msg == ‘off' |

cameraOff()

(‘topi

>

Figure 53 Door Camera Sequence Diagram

5.3. Sensors Control

The Sensor module maintains the sensor status which interacts with the Raspberry Pi. Currently,
there are two data from sensors will be delivered to Raspberry Pi that is temperature and humidity
both measurements respectively indoor and outdoor.

5.3.1. Temperature

The temperature measurement can be read from the temperature sensor by Raspberry Pi then
publish it to the MQTT Broker. The mobile app also can subscribe to the message which temperature
measurement sent by Raspberry Pi

5.3.1.1. Use Case
The use case diagram below is clearly shown the process of the Temperature Sensor data exchange
between the mobile phone, Raspberry Pi.

Home Automation System

Temperature Sensor Read Temperature Data ——

— Device Control Center

¥ Publish Temperature Data

i

i A E——

T g,’, Message Queue

\._:___:, ~

MQTT Broker T Subscribe Temperature Data —

.--“'--
_— Mabile Phone
Ul Status -

Ul Components Maintenance

Figure 54 Temperature Sensor Use Case

5.3.1.2. Class Diagram
The temperature module classes are described using UML class diagram below.

That is a Ul
component which
is to display the

thermometer

State

That is a Ul 0.1
component which is
extend

0.1

AtmosphereVWidget
_AtmosphereState

- temperatureValue: String i)
- humidityValue: String + createState(): State<StatefulVWidget>

- isPlanToRead belong to
- readintervalSeconds

+ initState()-void
+ dispose():void

+ build():Widget [===-- ————— has ’
- buildBody/():Widget 1 I T e
host: String
port: int

has 1

clientldentifier: String
secure: boolean
username: String
password: String

MattClient

- initial(): void

- connect(): void

- publish{topic:String, message:String)

- subscribe(topic:String):Future<int=

- unsubscribe(topic: String): Future<int=

- disconnect(): void

+ send(commander: String, param: String)

+ receive(command: String, Function callback)void

Figure 55 Temperature & Humidity Sensor Class Diagram

5.3.1.3. Wiring Diagram
The diagram described how the components connect to each other. There is useful information
provided below.

@ -s5v @ =Ground @ =PWM @ =SPI
@ =33v = GPIO =12C @ = UART ddddd
‘TR R RN
3.3v 2 sv ERanE
12C1 (SDA) ' sv EEEmE
12¢1 (scu) S s Ground (ERRAR
;:::: 5 Z::z :,T,:z: Temperature & Humidity Sensor
BCM17 2 PWMO / BCM18 |nd00r
ecm27 RS P Ground
Bcmz2 R N 5CM23
33v P CM24
SPI0 (MOSI) ° 20 Ground
sPI0 (MISO) RS B ECM25
spi0 (scLx) e 2 SPI0 (SS0) ARsna
Ground 25 2 SPI0 (SS1) mEaNan
EmamE
sems - [EEsEED
BCM6 SN S CM12 ERRA
PWM1 / BCM13 33 3 Ground ETHERHET:

Temperature & Humidity Sensor

BCM19 RS 3 BCM16 Outdoor

BCM26 3 3 BCM20
Ground 3 0 BCM21

<

BCM Code Raspberry Pi 4

Figure 56 Temperature & Humidity Sensor Hardware Design

1. Raspberry Piand Indoor Sensor

Raspberry Pi Indoor Sensor Wire Colour
5v Pin Positive Pin Red

GND Pin Negative Pin Grey

BCM 17 1/0 Pin Green

2. Raspberry Pi and Outdoor Sensor

Raspberry Pi Indoor Sensor Wire Colour
5v Pin Positive Pin Red

GND Pin Negative Pin Grey

BCM 27 1/0 Pin Green

5.3.1.4. Device Control Script
There are Python scripts implements to control the Temperature Sensor through the Raspberry Pi.
The Python script is described using class diagram below.

Controller \
1
+ client: MqttClient T—_maintains IndoorAtmosphereData

—

+ main():void ™+ INDOOR_DHT_PIN: int = 17
1,/ 011 4 atmosphereDataRead(): String
Smaintains
y P
0.1

. depends
T

OutdoorAtmosphereData

+ INDOOR_DHT_PIM: int = 27 ~~ . _ depends

=,

AtmosphereData

+ atmosphereDataRead(): String

+ read(DHT_SENSOR, PIN): String

Figure 57 Temperature & Humidity Sensor Scripts Class Diagram

5.3.1.5. Functional Description
In this section, it will describe that functions design of the Temperature Sensor in detail.

5.3.1.5.1. Read Indoor Temperature Measurement

e Description
The householder enters the temperature panel screen on the mobile phone that should display the
indoor temperature measurement in real-time.

e Key Parameters

MQTT Client Role Action Network Method Topic Name Message Return
Value
Flutter App sender Enter the publish topic/indoor/measure | on [not
temperature ment/read applicate]
screen
Raspberry Pi receiver [not applicate] subscribe | topic/indoor/measure | [not applicate] on
ment/read
Raspberry Pi sender Read the publish topic/indoor/measure | measurement [not
measurement WicFi ment/data applicate]
from sensor
Raspberry Pi receiver [not applicate] subscribe | topic/indoor/measure | [not applicate] measureme
ment/data nt
Flutter App sender Click lock button publish topic/indoor/measure | off [not
off ment/read applicate]
Raspberry Pi receiver [not applicate] subscribe | topic/indoor/measure | [not applicate] off
ment/read

Note: when the Raspberry Pi received the message of the topic ‘topic/indoor/measurement/read’ is ‘on’, then the Raspberry Pi will
continuously publish the data to the topic ‘topic/indoor/measurement/data’ interval 1 second until it received the message which is ‘off’
of the topic ‘topic/indoor/measurement/read’.

e Sequence Diagram

connect(brokerlP)

Enter the indoor

return rpiLocalMattClient
temperature sreen

createMQTTCommanderthost, port |id)

new MyttClient{host, port, id| isSecure)

connect(brokerlP)

return appLocalMattClient

return mattClient

return commander

.<_ ________________

commander.send(topic/indoorfmeasurement/read’, 'on))

appLocaligtt I|em.publlsh(‘toplc/indooﬁr|easurement/read', ‘on’)
>

pommander. receive(topic/indopr/measurement/data’ refrgshUIStateCallback:Function)
»
>

appLocalMgttClient. subscribe(topic/indoof/measurement/data’)
e G

when the data String msg =

received by client

has already

then call the
function read)
refreshUIStateCallback() [Loop

tpiLocaligttClient. subsi

topic/indoor/measurement/

cribe(!

op until the client li

i the msg equals to 'off,

Aor each iteration that intefrval 1 second]
ALT
[msg == 'on]]

callback(readAtrogphereData)
e

String

readAtrr

ent =

phergData()

rpiLocalMgttClient. piblish{topic/indoor/
measurement/data’, measurement)

[else]

(do nothing)

Exit the indoor
temperature sreen

~ommander.send(topic/indootimeasurement/read’, 'off)
>
i

appLocalMgttClient. publish(topic/indoor{measurement/read’, 'off)

Figure 58 Indoor Temperature & Humidity Sensor Sequence Diagram

5.3.1.5.2. Read Outdoor Temperature Measurement

e Description
The householder enters the temperature panel screen on the mobile phone that should display the

outdoor temperature measurement in real-time.

e Key Parameters

MQTT Client Role Action Network Method Topic Name Message Return
Value
Flutter App sender Enter the publish topic/outdoor/measu | on [not
temperature rement/read applicate]
screen
Raspberry Pi receiver [not applicate] subscribe | topic/outdoor/measu | [not applicate] on
rement/read
Raspberry Pi sender Read the publish topic/outdoor/measu measurement [not
measurement rement/data applicate]
from sensor Wi-Fi
Raspberry Pi receiver [not applicate] subscribe | topic/outdoor/measu | [not applicate] measureme
rement/data nt
Flutter App sender Exit the publish topic/outdoor/measu | off [not
temperature rement/read applicate]
screen
Raspberry Pi receiver [not applicate] subscribe | topic/outdoor/measu | [not applicate] off
rement/read

Note: when the Raspberry Pi received the message of the topic ‘topic/outdoor/measurement/read’ is ‘on’, then the Raspberry Pi will
continuously publish the data to the topic ‘topic/outdoor/measurement/data’ interval 1 second until it received the message which is ‘off’
of the topic ‘topic/outdoor/measurement/read’.

e Sequence Diagram

connect{brokerlP)

Enter the outdoor return rpiLocaligttClient
temperatureigeeens .| 00000 | R EETE S >l

createMQTTCommanderhost, port | id)

5

ew MttClient(host, port, id|, isSecure)

connect{brokerlP) ac
»

return appLocalMgttClient

return mgttClient

return commander

commander. send(topic/outdogr/measurement/read’, 'on’
>

appLocalMottClient publish('tnpic/uutdo&n‘measurement!read‘, ‘on’)
L

commander. receive(topic/outdpor/measurement/data’ refreshUIStateCallback: Functipn)
»

L4
appLocalMattClient. subscribe(topic/outdopr/measurement/data’)
B ——
when the data SHiRg s
has alread i« Y
received by cI}:em rplL_o;:aINéqtt(illent.subs ,nbi(
thanseall the top:jc outdoor/measurerent;
function read)
refreshUlStateCallback() [Loop

lpop until the client listened the msg equals to 'offf,
For each iteration that interval 1 second]

ALT

[msg == "on]
callback(readAtmogphereData)

String measurement =
readAtmospherdDatal)

rpiLocalMgttClient. piblish(topic/outdoor/
measurement/data’, measurement)

[else]

(do nothing)

Exit the outdoor
temperature sreen

B

commander.send(topic/outdodr/measurement/read’, 'off)
»
Ll

appLocalMattClignt. publish(topic/outdoor/measurement/read’, 'off)

Figure 59 Outdoor Temperature & Humidity Sensor Sequence Diagram

5.3.2. Humidity
The humidity measurement can be read from the humidity sensor by Raspberry Pi then publish it to
the MQTT Broker. The mobile app also can subscribe to the message which humidity measurement

sent by Raspberry Pi

5.3.2.1. Use Case
The use case diagram below is clearly shown the process of the Humidity Sensor data exchange
between the mobile phone, Raspberry Pi.

Home Automation System

Humidity Sensor Read Humidity Data ——

— Device Control Center

- Publish Humidity Data -

i

I EEEE—

T gﬂi Message Queue

\._:___:, -._____._-.

MQTT Broker "% Subscribe Humidity Data —

— @
.--"f‘- —
— Mobile Phone
e
Ul Status i

Ul Components Maintenance

Figure 60 Humidity Sensor Use Case

5.3.2.2. Class Diagram
The temperature module classes are described using UML class diagram that is the same to
temperature module classes diagram.

Please back to Temperature Class Diagram

5.3.2.3. Wiring Diagram
The diagram described how the components connect to each other. There is useful information
provided is the same to Temperature module’s wiring diagram.

Please back to Temperature Wiring Diagram

5.3.2.4. Device Control Script
There are Python scripts implements to control the Temperature Sensor through the Raspberry Pi.
The Python script is described using class diagram that is the same to Temperature’s.

Please back to Temperature Device Control Script

5.3.2.5. Functional Description
In this section, it will describe that functions design of the Humidity Sensor in detail.

5.3.2.5.1. Read Indoor Humidity Measurement

The householder enters the humidity panel screen on the mobile phone that should display the
indoor humidity measurement in real-time. The detail design which is the same to Temperature
module.

Please back to Read Indoor Temperature Measurement

5.3.2.5.2. Read Outdoor Humidity Measurement

The householder enters the humidity panel screen on the mobile phone that should display the
outdoor humidity measurement in real-time. The detail design which is the same to Temperature
module.

Please back to Read Outdoor Temperature Measurement

